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ABSTRACT

While many learning-driven algorithms for local feature de-
tection and description have submerged during recent years.
One key component in the pipeline, namely orientation esti-
mation, still remains underdeveloped. Among all sorts of dif-
ficulties, the impracticality and tedium of finding a ”ground
truth” feature orientation as a learning target is one big chal-
lenge. In this paper, we bypass this “thinking trap” and pro-
pose an unsupervised scheme that explicitly trains a simple
convolutional neural network to predict orientations for fea-
ture points. Together with a carefully designed loss term,
the network manages to provide accurate orientation estima-
tions. We further evaluate the capability of this estimator in
two experiments: orientation estimation and feature match-
ing. Results showed the proposed method outperforms other
compared methods on multiple benchmark datasets. The pre-
trained model is publicly available.'

Index Terms— Feature orientation, unsupervised learn-
ing, explicit learning, feature matching

1. INTRODUCTION

Local feature extraction is a powerful and omnipresent
tool in computer vision, serving as the foundation of many al-
gorithms and applications. A standard pipeline includes three
consecutive procedures. First, at multiple scales, detect key-
points with potentially rich and distinguishable textural infor-
mation around, typically corners or areas with significant gra-
dient variations. Second, estimate the orientations of the key-
points using surrounding local geometric information, with
dominant gradient as one example. These orientations will be
used later to rectify the descriptions and ensure the extracted
features to be rotational-invariant. Third, generate meaning-
ful descriptions for the keypoints, usually based on patches
centering at the keypoints with radii proportional to the scales
mentioned in first step.

For many years, handcrafted feature detectors [1, 2, 3, 4]
and descriptors [5, 3, 4, 6] dominated the field and achieved
very decent results, with SIFT [3] being one of the most cited
computer vision papers. Recently, as deep learning revisit-
ing many computer vision problems, researchers started to
investigate its power in local feature extraction. Both fea-
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ture detectors [7] and descriptors [8, 9] have received per-
formance gain by incorporating neural network into the solu-
tions. Works using deep learning for the entire feature extrac-
tion pipeline [10, 1 1] also show their strength in the caveats of
handcrafted algorithms such as wide baseline matching prob-
lem. However, as a major component in the pipeline, the ori-
entation estimation hasn’t received enough attention. Most
learning algorithms either hope the descriptor network will
learn to be rotational-invariant by itself with massive train-
ing data [8, 12], or they simple use a handcrafted method as
guideline and train a regressor to approximate it [1 1]. In fact,
we only find works from Yi et al. [13, 10] address this prob-
lem properly. We believe the difficult of finding a canonical
orientation as ground truth is one obstacle that impedes the
research.

In this paper, we propose an unsupervised scheme that
averts this “’thinking trap” and explicitly trains a regression
network to estimate the orientations for feature points. For
each feature point, we first sample an upright patch surround
it and ask network to estimate an orientation. We then sam-
ple another patch at the same location but apply rotation with
some known angle, and ask the network to give another esti-
mation. We supervise the network by comparing the differ-
ence between two estimations and this known angle. To deal
with the periodicity property of angle, we carefully design a
loss function which confines the range of output estimations.

We evaluate the proposed network on multiple benchmark
dataset in two experiments: orientation estimation and fea-
ture matching. The proposed method manifests strong perfor-
mances in both experiments compared with other handcrafted
and learned methods.

2. RELATED WORKS

Feature extraction has been studied for many years. A
comprehensive performance comparison of methods can be
found in [14]. Here, we will focus solely on orientation es-
timation algorithms. We first offer a brief introduction of
various handcrafted methods. We then shift to deep learning
paradigm and cover two most related works by Yi et al.

2.1. Handcrafted Orientation Estimators

Most handcrafted methods count on finding a reliable
dominant orientation within a patch surround the feature
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Fig. 1. Performance comparison of three orientation estima-
tion methods. Column 2 and 3 show the corresponding fea-
tures from two different views. Column 4, 5, 6 show the fea-
tures from view 2 being rotated back according to the orien-
tations estimated by Edge Foci [2], Yi [13], and our method.
Ideally, the rotated features from view 2 should have same
orientations as features from view 1 (column 2). As shown
above, our method has the most consistent performance.

point. The ways of finding such dominant orientation vary
from methods to methods. SIFT [3] uses histograms of gra-
dient orientations for the entire patch to decide the dominant
orientation. 3D-SIFT [15] inherits this core idea and extends
it to 3D field. SURF [4] applies guassian weights to the
wavelet responses in horizontal and vertical directions, and
from which, determines the orientation for the patch. ORB
[16] introduces a simple but effective measure, called inten-
sity centroid. It uses image moments to compute the center
of mass as well as the main orientation. Generally these
handcrafted orientation estimators are reliable. However,
they are prone to giving inaccurate estimations under noisy
conditions.

2.2. Learning Based Orientation Estimators

Yi et al. [13] propose to train a feature orientation es-
timator within the pipeline of feature matching. They first
pick some existing feature detector and descriptor, then they
substitute the orientation estimation part with their network.
Next, they use this entire pipeline to detect and match features
between a pair of images. The orientation network is trained
using the loss related to matching accuracy. To further sup-
port this training scheme, they propose a new activation func-
tion named Generalized Hinging Hyperplanes (GHH). Com-
paring to other activation functions like ReLU or PReLU [17],
the authors claim GHH to preserve more gradients throughout
this long pipeline. They extend the idea in [10], where they
proposed an end-to-end network combining detector, orien-
tation estimator and descriptor together. According to Yi, in

the previous training scheme, some existing description meth-
ods cannot backpropagate enough gradients, leading to per-
formance drop. By designing the entire pipeline with neural
network, they show further improvement in matching accu-
racy.

3. METHOD

3.1. Challenges in Orientation Estimation

As described previously, explicitly learn to estimate fea-
ture orientation is challenging. In fact, even the notion of
feature orientation might not be a valid concept per se, as it is
hard to assign a canonical pose to a feature point. One pos-
sible approach is to pick one handcrafted estimator as men-
tioned in Sec. 2.1 and train a network to approximate it.
Yet, it is debatable whether local structural information cap-
tured by handcrafted kernels is a good representation for ori-
entation. Especially when we are dealing with large baseline
problems, the accuracy will degrade dramatically due to sub-
stantial viewpoint and illumination change.

Another approach is to train the orientation implicitly like
[13]. However, as described in Sec. 2.2, this approach doesn’t
work for all descriptors. The performance also degrades when
the testing descriptor is different from the one used in training.

In this paper, we introduce a scheme that explicitly trains
the network to predict orientations of feature points. The pro-
posed method doesn’t rely on any handcrafted kernels and is
perfectly compatible with all descriptors.

3.2. Unsupervised Learning Scheme

As illustrated in Fig. 2, given a training image I, we
first use Edge Foci detector [2] to extract top 1000 feature
points with highest response. Each feature point comes with
a corresponding coordinate (x,y) in image and a radius 7.
We then extract an upright 32 x 32 patch P, centering at
I(x,y) with size r. Usually r # 32, and this process needs
up/downsampling. Next, we sample another 32 x 32 patch
P, again centering at I (z,y) with size r, but with a random
rotation 0y € (—m,7]. Py, P, are passed to the network G
and output two predicted angles G(P;) = 61, G(P2) = 65.
We train the network G by comparing the difference between
0y — 01 and O,.

3.3. Loss Function

The periodical property of angle (6 and any 0+ 2k are es-
sentially same angle) needs special care when designing loss
functions. As indicated in [13], simply letting alone period-
icity in loss function will lead to multiple local minima. We
overcome this hurdle by proposing a loss function with two
terms: range loss £, and prediction loss £, (Eq. 1). X is set
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Fig. 2. Unsupervised training pipeline. We first detect fea-
tures using Edge Foci detector. At each feature point, we sam-
ple two patches, one being upright and the other with some
angle 0y. Network was supervised by comparing 6 — ¢, and
O

to 10~ in this paper.
L(01,02,04) = L(01) + L-(02) + ALp(02 — 01,04) (1)

The range loss L., as defined in Eq. 2, penalizes when |6] >
.

L,(0) = max(|0| — m,0) 2)
The prediction loss £, measures the distance between 05 — 6,
and 0y. Since we constrain || < m, the range of O =
0, — 6, will fall between —27 to 27r. Therefore, we first mod
it to [—, ] as Ogirr. We also need to make sure that distance

between édiff and 0, is <  (distance between 30° and 330°
is not 300° but 60°). We present the detail of £,, in Eq. 3.

Ly (Odifr, 0g¢) = min (|éditf — Oy, 2m — \Qaite — 9gl|) 3

3.4. Network Architecture
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Fig. 3. Architecture of proposed network
We show the details of proposed orientation network in
Fig. 3.
4. RESULTS

4.1. Datasets

We train the proposed network on HPatch dataset [18],
and evaluate its performance on Edge Foci [2], Viewpoints
[13], and Webcam [19] datasets. All these datasets serve as
benchmarks for matching local features. They each contains

a number of image sets of different contents. Each set in-
cludes multiple images capturing the same scene from differ-
ent perspectives, lighting conditions, focal length, noise, etc.
Each set also provides the homograph matrices for all combi-
nations of image pairs. The homograph matrices are used to
find ground truth when analyzing feature matching. We con-
sider HPatch dataset [ 18] to be extremely comprehensive and
fit for a network to learn local features from. Sizewise, it con-
tains 116 sets of images, which is over 10 times larger than
other datasets. It is also composed of images from very di-
verse categories including portraits, landscapes, indoors, pla-
nar objects (graffiti), cluttered space, etc.

4.2. Implementation Details

The network is trained with stochastic gradient descent
optimizer [20]. The momentum is set to 0.9, and weight decay
is set to 107%. The initial learning rate starts at 10~2, and
is divided by 10 every time the performance plateaus for 10
epochs. We stop training when learning rate is below 1077,

To further enrich the training data and approximate the
real scenarios, when sampling the second patch P, with an
angle 0y, we add a random translation, making P, centering
at I(x + A,,y + Ay). The reasoning behind is that, even
for the two corresponding feature points, they usually are not
centered at exactly same location. We constrain the range of
this random translation to be ||(A,, Ay)||2 < /4, where r is
the radius of feature point.

4.3. Experiment Setup
4.3.1. Orientation Estimation

This experiment is very similar to training and the goal is
to evaluate the accuracy of orientation prediction. For each
test image, we detect top 1000 features with Edge Foci de-
tector. We then sample two patches P, P» using same pro-
cedure described in Sec. 3.2. We report the average error
between 0 — 0 and 6 as performance metric in Table 1. We
examine four orientation estimators in this experiment: the
handcrafted estimators Edge Foci (EF) [2], SURF [4]; and
the learning based method from Yi et al. [13], and ours. Note
that in order to be fair to SURF [4] and Edge Foci [2], which
are sensitive to keypoints locations. we didn’t include random
translation when sampling the second patch during testing.

We divide the range of random angle 6y into four par-
titions and see whether each method will degrade when 6y
increases. Overall, the two learning based methods perform
much better than handcrafted ones. Our method achieves best
accuracy on all tested datasets. We also observe that the two
learning based methods performed well as 6, increases.

4.3.2. Feature Matching

We replace the orientation estimator in traditional feature
matching evaluation pipeline with ours and further demon-
strate the power of the proposed network in this section. For
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Viewpoints [13] | EF+ VGG EF + Daisy | Yi+ VGG Yi+ Daisy | Ours + VGG  Ours + Daisy
Chatnoir 0.51 0.50 0.61 0.59 0.63 0.61
Duckhunt 0.38 0.20 0.48 0.33 0.45 0.31
Mario 0.24 0.15 0.31 0.20 0.34 0.22
Outside 0.39 0.32 0.49 0.41 0.51 0.41
Posters 0.57 0.55 0.65 0.59 0.65 0.57

Edge Foci [2] | EF+ VGG EF + Daisy | Yi+ VGG Yi+ Daisy | Ours + VGG  Ours + Daisy
Notredame 0.21 0.17 0.32 0.27 0.34 0.28
PaintedLadies 0.03 0.02 0.05 0.05 0.04 0.03
Rushmore 0.09 0.06 0.12 0.07 0.15 0.10
Yosemite 0.04 0.03 0.06 0.04 0.07 0.05
Obama 0.12 0.12 0.19 0.18 0.24 0.22

Webcam [19] EF+ VGG EF + Daisy | Yi+ VGG Yi+ Daisy | Ours + VGG Ours + Daisy
Chamonix 0.36 0.30 0.50 0.41 0.49 0.40
Courbevoie 0.30 0.26 0.41 0.37 0.45 0.39
Frankfurt 0.37 0.31 0.50 0.43 0.51 0.43
Mexico 0.31 0.21 0.39 0.31 0.42 0.32
Panorama 0.24 0.24 0.26 0.25 0.26 0.25
StLouis 0.19 0.13 0.29 0.21 0.27 0.21

Table 2. mAP for all 6 orientation estimator and feature descriptor combinations. Using learning based estimators receive
constant gains the mAP, which perfectly aligns with orientation estimation results. Our method provides the most performance

gains in the majority of image sets.

Viewpoints [13] EF SURF Yi Ours
|| < 15° | 5.82° 7.33°  3.90° 2.48°

15° < |0g] < 45° | 11.99° 15.86° 5.47° 3.94°
45° < |0g| < 90° | 12.27°  16.42° 5.49° 3.98°
90° < |fy| < 180° | 14.31° 20.72° 5.38° 4.11°
Edge Foci [2] EF SURF Yi Ours

|0 < 15° | 6.15° 7.72°  4.36° 2.77°

15° < |0y < 45° | 13.13° 16.83° 6.11° 4.19°
45° < |0g| <90° | 13.23° 17.99° 5.99° 4.27°
90° < |0y < 180° | 18.44° 22.84° 6.10° 4.48°
Webcam [19] EF SURF Yi Ours

|| < 15° | 5.99° 7.60° 4.45° 2.86°

15° < |0y < 45° | 12.60° 16.30° 6.04° 4.15°
45° < [0y < 90° | 12.77° 17.21° 5.98° 4.24°
90° < |0y < 180° | 18.40° 22.17° 6.01° 4.49°

Table 1. Average error for orientation estimation. As shown
in the table, two learning based methods outperform hand-
crafted ones by large margins. They also have relatively con-
sistent performances for both large and small ;. Our method
has the lowest error in all benchmarks.

baseline, we use Edge Foci detector + Daisy [5] descriptor
and Edge Foci detector + VGG [&] descriptor. These two
descriptors each represents handcrafted and learning based
methods. We substitute the orientation estimator in Edge Foci
detector with Yi’s method [13] and ours, yielding a total of 6
combinations. In detail, given a pair of images in the test
dataset, we first detect top 1000 feature points with Edge Foci
[2] detector. Ground truth matching pairs between the 2000
feature points in two images are found using the provided ho-
mograph matrix. Each feature point will then receive a de-
scription based on the orientation estimator and descriptor in
the combination. We match these features by descriptions and
check with ground truth matching. We report the mean Av-
erage Precision (mAP) for each combination, which is mea-
sured as the area under the precision-recall curve [14].

As illustrated in the Table 2, feature descriptors benefit a
lot from both learning based estimators, which aligns with the
results in Sec. 4.3.1. Surprisingly, our unsupervised method
outperforms Yi’s method in multiple image sets, considering
Yi’s method is trained under very similar scheme as this eval-
uation pipeline.

5. CONCLUSION

In this paper, we present an unsupervised scheme to ex-
plicitly train a network to estimate feature orientation. Both
experiments in orientation estimation and feature matching
show the proposed algorithm can provide accurate orientation
estimation.
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