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Abstract— It is widely acknowledged that single image
super-resolution (SISR) methods play a critical role in recovering
the missing high-frequencies in an input low-resolution image.
As SISR is severely ill-conditioned, image priors are necessary
to regularize the solution spaces and generate the corresponding
high-resolution image. In this paper, we propose an effective
SISR framework based on the enhanced non-local similarity
modeling and learning-based multi-directional feature prediction
(ENLTV-MDFP). Since both the modeled and learned priors
are exploited, the proposed ENLTV-MDFP method benefits from
the complementary properties of the reconstruction-based and
learning-based SISR approaches. Specifically, for the non-local
similarity-based modeled prior [enhanced non-local total varia-
tion, (ENLTV)], it is characterized via the decaying kernel and
stable group similarity reliability schemes. For the learned prior
[multi-directional feature prediction prior, (MDFP)], it is learned
via the deep convolutional neural network. The modeled prior
performs well in enhancing edges and suppressing visual artifacts,
while the learned prior is effective in hallucinating details from
external images. Combining these two complementary priors in
the MAP framework, a combined SR cost function is proposed.
Finally, the combined SR problem is solved via the split Bregman
iteration algorithm. Based on the extensive experiments, the pro-
posed ENLTV-MDFP method outperforms many state-of-the-art
algorithms visually and quantitatively.

Index Terms— Super resolution, decaying kernel, stable
group similarity reliability, enhanced non-local total variation,
multi-directional feature prediction.

I. INTRODUCTION

S INGLE image super-resolution (SISR) methods gen-
erate a high-resolution (HR) image using a single

low-resolution (LR) observation. Since low-performance
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imaging equipments and poor imaging conditions have inher-
ent limitations, acquiring an HR image at desired resolution
level is not always an easy task in practical applications,
such as remote sensing imaging, medical imaging, and video
surveillance. By using the SISR technique, the limitations of
both imaging devices and the environment can be reduced,
and a desired HR image can be produced. In the highly
ill-posed SISR problem, effective prior knowledge should
be exploited to regularize the super-resolved images. Gen-
erally, the existing numerous SISR methods can be roughly
categorized into three groups [1]–[4]: interpolation-based
super-resolution (SR) algorithms [5]–[7], learning-based SR
algorithms [3], [4], [8]–[32], and reconstruction-based SR
algorithms [33]–[42]. We briefly review these major SR cate-
gories in the next section below, and then discuss our motiva-
tions and contributions.

A. A Review of Different Categories of SISR Methods

The interpolation-based methods [5]–[7] predict the
unknown HR image by using interpolation kernels. Although
they are simple and fast, their applications are limited as only
the down-sampling degradation is considered.

To benefit from a large collection of training sam-
ples for high-quality image SR, the learning-based methods
focus on learning the LR-HR mapping relationship or some
training samples-driven priors. Since their introduction by
Freeman et al. [43] around 2002, the learning-based SR meth-
ods have achieved great success. In general, these methods
can be divided into two groups: unsupervised or supervised
methods [44]. For the unsupervised methods, the training
samples are collected from the input image itself. For example,
by using similar patches across different scales and within the
same scale simultaneously, an effective unsupervised learning-
based method is presented in [45]. Huang et al. [16] further
present a self-similarity based unsupervised SR algorithm
that uses transformed self-exemplars. In contrast, the super-
vised methods collect the training samples from the external
images. Most of the learning-based SR methods belong to this
group. Specifically, they include the following categories based
on different learning models: Markov random fields [43],
sparse representation [3], [10]–[13], local linear embedd-
ing [14], [46], regression model [17]–[21], and deep con-
volutional neural network (CNN)-based methods [22]–[30].
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For example, a coupled LR-HR dictionaries based method is
proposed in [3], with the assumption that the LR-HR patch
pairs share the same sparse representation coefficients. In [20],
first, the local geometry prior is exploited to regularize the
patch representation, and then the HR output is improved via
the non-local means filter. Although the conventional learning-
based methods are capable of reproducing fine details, they are
also prone to introduce displeasing artifacts into the super-
resolved results [2].

In contrast, the deep learning-based SISR methods can
overcome these limitations to some extent. Nowadays, CNN
is becoming more popular in SR applications [22]–[30], [44].
For example, Johnson et al. [27] propose the use of per-
ceptual loss functions for training feed-forward networks
for image transformation tasks, including style transfer
and SISR. Although Johnson’s method can achieve good
visual performance, both PSNR and SSIM results are rela-
tively low. An effective method that combines sparse prior
with the deep networks is proposed for SISR in [47].
Simonyan and Zisserman [48] propose an SR method by
using a very deep convolutional network inspired by VGG-net
used for ImageNet classification. Indeed, deep convolutional
neural networks (CNNs) have been attracting considerable
attention recently. However, as the depth grows, the long
term dependency problem is rarely realized for these very
deep models. Motivated by the fact that human thoughts have
persistency, Tai et al. [29] propose a very deep persistent
memory network that introduces a memory block to explicitly
mine persistent memory through an adaptive learning process.
The above mentioned deep learning-based SISR methods all
belongs to the supervised group. Shocher et al. [44] propose
an unsupervised CNN-based SR method for the first time,
which can handle non-ideal imaging conditions, and a wide
variety of images and data types. Generally, since the network
is becoming deeper and deeper, the complexity of the deep
CNN-based method significantly increases. Designing efficient
SISR method that significantly improves SR performance is a
challenging problem.

Different from the learning-based methods which highly
depend on training samples, the reconstruction-based
approaches focus on designing some prior constraints for
SR without using any training samples. Specifically, based
on the maximum a posteriori (MAP) theory, these methods
enforce consistency between the estimated HR image and
the observed LR image by incorporating prior constraints in
the cost function to regularize the solution spaces. Various
image priors have been introduced into the SR problems.
For instance, a smoothness prior is proposed in [49], which
blurs out high-frequency details. To reproduce sharp edges,
in [42], a robust edge-preserving smoothing prior is proposed,
which preserves edges well and also reduces noise. In [36],
an edge-directed prior is adopted to preserve edges. However,
it is sensitive to noise and prone to unnatural results.
To maintain edges and suppress artifacts, non-local means
(NLM) [50] based regression prior is proposed in [33].
In addition, based on the non-local similarity, many non-local
total variation (NLTV) priors [37], [51]–[53] are proposed.
In [38], Ren et al. propose an adaptive high-dimensional

non-local total variation (AHNLTV) to further improve
the traditional NLTV. Moreover, the non-local means prior
is integrated into the sparse coding based method in [2].
In summary, the reconstruction-based methods are typically
only propitious to suppress artifacts and preserve edges, while
fine image details may be smoothed out [2]. Consequently,
it is difficult to make a trade-off between artifacts suppression
and details recovery. Moreover, as many state-of-the-art
image priors have been proposed, to simply modify the prior
to achieve significant SR improvement is also challenging.

B. Motivations and Contributions

As reported in many SISR literatures [37]–[39], [54], [55],
assembling multiple complementary priors can obtain supe-
rior SR performance comparing to individual single prior.
In addition, the work in [2] claims that the combination
of the reconstruction-based and learning-based methods can
further improve the SR performance. Inspired by these works,
we propose a combined SISR method, which bridges these
two SISR methods and provides complementary regulariza-
tion constraints. We propose an enhanced non-local total
variation (ENLTV) model to suppress images noises and
artifacts, as well as a deep CNN-based local multi-directional
feature prediction (MDFP) prior to recover fine image details.
By incorporating the two priors into a MAP-based framework,
the HR estimate can be obtained via split Bregman itera-
tion (SBI) algorithm. The proposed method has the following
benefits: 1) Since ENLTV and MDFP constrain the non-local
and local features of images respectively, the unknown HR
image features can be well constrained; 2) ENLTV and MDFP
can fully exploit the internal image (input image itself) and
external images (training dataset) respectively for better HR
image reconstruction; 3) ENLTV is a conventional modeled
prior which performs well in eliminating artifacts and noises,
and MDFP is a deep CNN-based learned prior which performs
well in reconstructing fine details. Consequently, the proposed
method takes advantages of the complementary ENLTV and
MDFP priors.

Specifically, since the original AHNLTV [38] treat all
the shifted target patches with different shift-distances
equally, it ignores the effect of shift-distance. Intuitively,
a large shift-distance should lead to a small weight,
and vice versa, which means the weight function should
have a spatially-adaptive decaying kernel with respect to
shift-distance. Therefore, we propose a Decaying Ker-
nel (DK) scheme for multi-shifted target patches. In addition,
in AHNLTV, a group of similar pixels will be searched for
each pixel. However, we find that the original AHNLTV
cannot accurately calculate the reliability of the similar pixel
group. To improve the effectiveness of AHNLTV, a more
effective strategy that can adaptively tune the constraint
strength for each similar pixel group is needed. Consequently,
we propose the stable group similarity reliability (SGSR)
scheme. By using both the DK scheme for shifted target
patches and measuring the reliability of the searched similar
pixel group with the SGSR scheme, an improved AHNLTV
model, i.e., ENLTV, is proposed, and the artifacts can be
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well suppressed. To reconstruct fine details, we construct
and train a simple but effective feature prediction CNN for
multi-directional features prediction. Next, the unknown HR
multi-directional features are predicted via the proposed deep
CNN. With these predicted features, we can formulate a deep
learning-based learned prior MDFP. The main contributions
are as follows:

1) We characterize the non-local similarity by incorporating
the proposed DK and SGSR schemes into the AHNLTV
model. These two schemes take both the shift of each tar-
get patch and the reliability of the searched similar pixel
group into consideration, and lead to a powerful modeled
prior ENLTV. This modeled prior can constrain the non-local
features of images by using the internal image itself.

2) We propose to utilize the multi-directional feature predic-
tion CNN to estimate the unknown HR local features by using
external samples. The estimated local features are formulated
as an effective learned prior MDFP.

3) By incorporating the modeled prior ENLTV and the
learned prior MDFP, an effective combined SISR framework is
developed. This framework combines the reconstruction-based
and learning-based methods in a simple manner. The
ENLTV-MDFP-driven minimization problem is solved via the
SBI algorithm.

4) ENLTV is essentially a non-local and internal
image-based modeled prior, which performs well in artifacts
and noises suppression. MDFP is essentially a local and
external images-based learned prior, which performs well in
fine details recovery. Benefiting from these complementary
properties of ENLTV and MDFP, HR images with better
objective and subjective quality can be reconstructed. In addi-
tion, with the initial HR image estimation, the proposed
method is also much faster than many existing state-of-the-
art reconstruction-based methods.

C. Organization

The rest of the paper is structured as follows. First,
Section II briefly reviews the related works. The proposed
combined SR framework is presented in Section III. Exper-
imental results of all competing methods are illustrated in
Section IV. Finally, conclusions are drawn in Section V.

II. RELATED WORKS

In this section, we briefly introduce several related works,
including AHNLTV and deep CNN.

A. Adaptive High-Dimensional Non-Local Total Variation

Recently, several NLTV models have been devel-
oped [37], [51]–[53] based on the non-local similarity
throughout natural images. However, for the L nearest-
neighbors search of each pixel Xi , those models only exploit
a fixed non-shifted p × p target patch Pi ∈ R

p2×1 (search
area size r × r ). The search accuracy decreases in regions
where non-shifted similar neighbors are rare [38]. To fully
model the non-local similarity, a multi-shifted similar-patch
search (MSPS) based AHNLTV prior is proposed in our

Fig. 1. Graphical illustration of multi-shifted target patches.

previous work [38]. Specifically, for Xi , p2 shifted target
patches are simultaneously used. An example of p = 7 is given
in Fig. 1, where the non-shifted target patch Pi , and the 1st,
2nd, 8th, and 49th shifted target patches (Pi1, Pi2, Pi8, Pi49)
are given (the number of the shifted target patch is from left
to right and up to down). For each shift, we search the L
nearest neighbors, and thus for Xi , there are totally Lp2 similar
pixels (X j -s). Denote the coordinates of these similar pixels
as Ni ∈ R

Lp2×1, where the super-high dimension of Ni will
significantly increase the computation complexity. Fortunately,
we found that there are many repetitions in each Ni , and by
removing the repetition in Ni , we can construct a new index
set N

R
i ∈ R

ρi Lp2×1 with much lower dimension (ρi is the
reduction ratio). The similar weight wi j can be calculated by

wi j = wc(i, j)wd(i, j), j ∈ N
R
i (1)

where wc(i, j) is the probability weight and wd (i, j) is the
pixel distance weight. wc(i, j) is defined as follows:

wc(i, j) = ci j /(α + ci j ), j ∈ N
R
i (2)

where ci j is the repetition number of j in Ni . α is a constant,
and is set to p2. A reasonable assumption is that if two
pixels are more similar than others, then the non-local similar
pixels of these two pixels should also be similar. With this
assumption, the weighted average of a given pixel and its
non-local pixels can be used to redefine this given pixel for the
stability of the pixel distance weight wd(i, j). Calculating the
weighted average for all the pixels in the image is equivalent
to construct the following weighted reference image X̃:

X̃i = βXi + (1 − β)
∑

l∈Ni

(Xl/(Lp2)) (3)

where β is set to 1/(L + 1). By using X̃, wd (i, j) can be
defined by

wd(i, j) = exp(−(X̃i − X̃ j )
2/2h2), j ∈ N

R
i (4)

where exp(·) is the exponential function, X̃ j is the j -th pixel
of X̃, and h is a constant. With these notations, the AHNLTV
model can be formulated as

MA(X) =
∑

i∈�

√∑
j∈NR

i

wi j (Xi − X j )2 (5)

where � represents the index set for pixels of X.
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Algorithm 1 Decaying Kernel (DK) Scheme

We should note that, the computational complexity for
the similar patches search is as high as O(M N p2r2) (the
image size is M × N). In AHNLTV, the integral image
technique [38], [56], [57] is exploited to reduce the com-
plexity. According to [38], the complexity is reduced to
O(6M Nr2). We refer interested readers to [38] for more
details.

B. Deep Convolutional Neural Network

Nowadays, deep CNN techniques are gaining significant
popularity in image restoration applications [58]–[60]. On the
whole, the deep CNN is an artificial neural network formed
by a stack of distinct layers that transform the input volume
into an output volume through a differentiable function. It can
automatically learn the filters from external images, which
is independent of prior knowledge, and performs extremely
well in nonlinear fitting. Specifically, it consists of an input
layer, an output layer, and multiple hidden layers. Typically,
the hidden layers include convolution layers, normalization
layers, pooling layers, etc. For CNN, many achievements have
been gained, and some representative achievements related to
our work will be introduced, i.e., residual learning [61] and
Rectified Linear Unit (ReLU) [62]. The vanishing gradient
problem is challenging in the deep CNN. Residual learning
is proposed to address the performance degradation caused by
increasing the network depth. ReLU is a commonly used acti-
vation function in deep learning, and it performs a threshold
operation to each element of the input, where any value less
than zero is set to zero. This operation is equivalent to

R(x) =
{

x, x ≥ 0

0, x < 0
(6)

ReLU has low complexity and can also alleviate the gradient
vanishing problem. Consequently, a deeper CNN can be well
trained with residual learning and ReLU.

III. PROPOSED METHOD

In this section, we propose a combined SISR method to
significantly improve SR performance. On the one hand,
by using the DK scheme and the SGSR scheme, the origi-
nal AHNLTV prior is further improved for better non-local
similarity modeling based on the internal image, which is

essentially a non-local prior and performs well in artifacts and
noises suppression. On the other hand, a local multi-directional
feature prediction prior is learned from external images for
better fine structures recovery, which is essentially a local
prior. By combining these two complementary priors, higher
quality images can be obtained.

A. Combined Single Image Super Resolution

The basic formula of our proposed combined method for
SISR problem is

X̂ = arg min
X

‖Y − DHX‖2
2︸ ︷︷ ︸

fidelity term

+λ M(X)︸ ︷︷ ︸
modeled prior

+η L(X)︸ ︷︷ ︸
learned prior

(7)

where H is the blur matrix, D denotes the down-sampling
matrix, λ and η represent the regularization parameters. The
fidelity term enforces the estimated X to be consistent with the
degraded LR input Y via back-projection; the modeled prior
and the learned prior are used to regularize the solution space
of X by using both the modeled features (e.g., non-local sim-
ilarity) and the learned features (e.g., local multi-directional
features).

B. Modeled Prior: Enhanced Non-Local Total Variation

1) Decaying Kernel (DK) for Multishifted Target Patches:
In this subsection, we will analyze the influence of each
shifted target patch in AHNLTV. For convenience, only
the shift-distance is taken into consideration. The original
AHNLTV applies a uniform weight to all the shifted target
patches with different shift-distances. However, intuitively,
a large shift-distance should lead to a small weight, and
vice versa, which means the weight function should have
a spatially-adaptive decaying kernel with respect to shift-
distance. From Eqs. (1) and (2), we can conclude that wi j

would increase with the growth of ci j . Consequently, we can
operate on ci j to implement the DK scheme. For pixel Xi , let
the searched L similar pixels corresponding to the k-th shift be
Si,k = {X j | j ∈ N

L
i,k }. Then, in our implementation, ci j can be

changed to the decaying weight summation of all the {Si,k |k =
1, 2, ..., p2} for Xi . To meet the previous requirement for DK,
a p × p Gaussian kernel with standard-deviation σ can be
utilized, and it is defined as

Gσ
p = {exp (−δ2

ι /σ
2)/Zσ |ι = 1, 2, ..., p2} ∈ R

p2×1 (8)

where δι is the shift-distance, and Zσ is the normalization
factor. A graphical illustration of DK for target patches is
shown in Fig. 2, where the red patch is the non-shifted target
patch Pi , the blue patch is the 3rd shifted target patch Pi3,
and the yellow patch is the 33th shifted target patch Pi33.
As the shift-distance of Pi3 (δ3 = √

10) is larger than the
shift-distance of Pi33 (δ3 = √

2), Pi3 should have a smaller
weight (i.e., Gσ

p(3)) than Pi33 (i.e., Gσ
p(33)). Define Ĝσ

p as

Ĝσ
p =[Gσ

p(1)...G
σ
p(1)︸ ︷︷ ︸

L

, ...,Gσ
p(p2)...Gσ

p(p2)
︸ ︷︷ ︸

L

]T ∈R
Lp2×1 (9)
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Fig. 2. Graphical illustration of decaying kernel.

As there are many repetitions for each index j in Ni ,
we define I j as the index set of j in Ni . Then, the ci j in
original AHNLTV is changed to cDK

i j as

cDK
i j =

∑

m∈I j

Ĝσ
p(m) (10)

Next, we define a probability vector as

ci = {cDK
i j | j ∈ N

R
i } (11)

Rather than choosing all similar pixels, we discard similar
pixels with small probability for both stability and dimension
reduction. Thus, the final ci is given as

ĉi = Dis(ci , τdis ) = {cDK
i j | j ∈ N̂

R
i } (12)

where Dis(ci , τdis) is a function discarding the elements with
probability smaller than a threshold τdis in ci , and N̂

R
i ∈

R
ρ̂i Lp2×1 denotes the index set removing the indices of pixels

whose cDK
i j is smaller than τdis in N

R
i .

Finally, the DK-based weight can be expressed as

wDK (i, j) = wDK
c (i, j)wd(i, j), j ∈ N̂

R
i . (13)

where

wDK
c (i, j) = cDK

i j /(α + cDK
i j ) (14)

Thus, a new modeled prior (called ENLTV0 in this work)
can be constructed. It is formulated as

M0(X) =
∑

i∈�

√∑
j∈N̂R

i

wDK (i, j)(Xi − X j )2 (15)

2) Stable Group Similarity Reliability (SGSR) for M0(X):
The non-local gradient function Gi

wDK : R
M N×1 → R

ρ̂i Lp2×1

can be defined by

Gi
wDK (X)

def= [(X j − Xi )

√
wDK (i, j)| j ∈ N̂

R
i ] (16)

Then, the non-local gradient magnitude function FwDK :
R

M N×1 → R
M N×1 is defined as follows:

FwDK (X)
def= [‖G1

wDK (X)‖2, ..., ‖GM N
wDK (X)‖2]T (17)

With these notations, Eq. (15) can be rewritten as

M0(X) = ‖FwDK (X)‖1 (18)

Define the summation Si of the non-local weights for Xi ,
the normalized non-local weight wDK

n (i, j), and the confi-
dence image vector WSum

C I ∈ R
M N×1 as

⎧
⎪⎪⎨

⎪⎪⎩

Si
def= ∑

j∈N̂
R
i
wDK (i, j)

wDK
n (i, j)

def= wDK (i, j)/Si

WSum
C I

def= [√S1, ...,
√

SM N ]T

(19)

It is easy to prove that

‖Gi
wDK (X)‖2 = √

Si‖Gi
wDK

n
(X)‖2 (20)

where Gi
wDK

n
(·) is the normalized non-local gradient function

for Xi . Then,

M0(X) = ‖FwDK (X)‖1 =

∥∥∥∥∥∥∥

⎡

⎢⎣
‖G1

wDK (X)‖2
...

‖GM N
wDK (X)‖2

⎤

⎥⎦

∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥

⎡

⎢⎣

√
S1
...√

SM N

⎤

⎥⎦�

⎡

⎢⎢⎣

‖G1
wDK

n
(X)‖2

...

‖GM N
wDK

n
(X)‖2

⎤

⎥⎥⎦

∥∥∥∥∥∥∥∥
1

= ‖WSum
C I � FwDK

n
(X)‖1 (21)

where “�” denotes the element-wise Hadamard product of
two vectors, and FwDK

n
(·) is the normalized non-local gradient

magnitude function. Eq. (21) reveals that the normalized
non-local gradient magnitude vector FwDK

n
(X) is weighted

via WSum
C I in the ENLTV0 prior. However, we argue that

WSum
C I does not accurately capture the reliability of the similar

pixel set according to the results in Section IV. To improve
the effectiveness of the ENLTV0 model, a more effective
pixel-dependent vector WDisp

C I ∈ R
M N×1 that can adaptively

tune the constraint strength for each pixel is needed. In our
method, we use the stable group similarity reliability (SGSR)
to design WDisp

C I .
Before the introduction of WDisp

C I , we give the definition of
the dispersion ζi for the group Si . As the dimension of Si is
greatly reduced in DK step, we denote the reduced version as

Ŝi
def= {X̃ j | j ∈ N̂

R
i } ∈ R

ρ̂i Lp2×1, wi
def= {wDK (i, j)| j ∈ N̂

R
i } ∈

R
ρ̂i Lp2×1, wDK (i, i)

def= max (wi ), w̃i
def= {wDK

n (i, j)| j ∈
N̂

R
i } ∈ R

ρ̂i Lp2×1, and 1i be an ρ̂i Lp2-dimensional column
vector of all ones. The weighted mean vector can be calculated
as follows (note that the center pixel X̃i is included):

X̄i = 1i ·
(

[wT
i , wDK (i, i)]

‖[wT
i , wDK (i, i)]‖1

·
[

Ŝi

X̃ i

])
(22)

After that, the dispersion ζi can be computed as

ζi =
√

w̃T
i (Ŝi − X̄i )�2 (23)

where “�2” stand for the Hadamard power. With ζi -s, WDisp
C I

can generally be given as follows:

WDisp
C I

def= [J (ζ1), ...,J (ζM N )]T ∈ R
M N×1 (24)

where J (·) is a positive weighting function associated with the
i -th normalized non-local gradient magnitude ‖Gi

wDK
n
(X)‖1

2.
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If the corresponding Ŝi is very reliable, i.e., the corresponding
SGSR is high, J (·) should be large, and vice versa. This leads
to the following dispersion-based strategy: if the dispersion of
Ŝi is small, a large constraint should be imposed on Xi , and
vice versa. It can be given by

J (ζi )
def= (1 + AζBi )

−1
(25)

where the two non-negative constants A and B are set to
2 and 0.75, respectively. As WDisp

C I is dependent on the image
structures, it should have strong local consistency. Therefore,
we introduce the concept of confidence image filtering into this
work. In addition, the confidence image filtering can also lead
to better noise suppression. First, we reshape the weighting
vector WDisp

C I to form a 2D image, and we call it confidence

image WDisp
C I |2D . Since the steering kernel [63] is essential

for capturing the structure information of images and is very
robust to perturbations of local image data, we filter WDisp

C I |2D

via local steering kernel to improve the local consistency and
suppress noise. Next, in the local structure analysis window,
we calculate the p′ × p′ steering kernel of the j -th neighbor
of Xi according to the following equation:

wK
i j =

√
det(Ci )

2π h̄2

×exp

(
−
([

i1
i2

]
−
[

j1
j2

])T

Ci

([
i1
i2

]
−
[

j1
j2

])/
2h̄2

)

(26)

where wK
i j is the j -th element of the steering kernel wK

i , Ci is
the gradient covariance matrix, h̄ represents the smoothing
parameter, and [i1, i2]T and [ j1, j2]T are the 2D forms of the
coordinates i and j . (See [63] for more details). Furthermore,

the filtered
˜WDisp

C I |2D can be calculated by

˜WDisp
C I |2D =

∑
i∈� RT

i

(
Ri (W

Disp
C I |2D) ∗ wK

i

)
(27)

where Ri (·) is a function extracting the p′ × p′ patch centered
at i . “∗” denotes the convolution operation. For mathematical
convenience, we use the matrix form to denote this operation.
For the coordinate i , by defining the index set of the group of
neighbors as Oi , Eq. (27) can be reformulated as

˜WDisp
C I = KWDisp

C I (28)

where

K(i, j) =
{
wK

i j , j ∈ Oi

0, otherwise
(29)

Finally, the DK- and SGSR-based ENLTV can be given as

M(X) = ‖ ˜WDisp
C I � FwDK

n
(X)‖1 (30)

Fig. 3. Graphical illustration of multi-directional filters.

Algorithm 2 Stable Group Similarity Reliability (SGSR)
Scheme

C. Learned Prior: Multi-Directional Feature Prediction

1) Learned MDFP Prior: Natural images contain various
underlying features. By constraining image structures via some
predicted features, the images details can be well recovered.
This constraint will lead to a learned prior. Let Y be the input
LR image, X be the HR image, E(X) be the extracted features
from X, and ψE (Y) be the predicted HR features, then the
learned prior can be written as

L(X) = ‖E(X)− ψE (Y)‖2
2 (31)

Specifically, for each pixel Xi , eight filters {f1, f2, ..., f8}
can be used to extract its corresponding eight directional
features, as shown in Fig. 3. The filters are defined as follows:

f1 =
⎡

⎣
0 0 0

−1 1 0
0 0 0

⎤

⎦ , f2 =
⎡

⎣
−1 0 0
0 1 0
0 0 0

⎤

⎦ ,

f3 = rot(f1, 90◦), f4 = rot(f2, 90◦), f5 = rot(f1, 180◦),
f6 = rot(f2, 180◦), f7 = rot(f1, 270◦), f8 = rot(f2, 270◦) (32)

where rot(f, θ◦) denotes rotating f clockwise by θ degrees.
Define the k-th feature for Xi be the convolution of X and fk

at position i , and denote it as Ek(X)i . Due to the symme-
try, only four directional features (i.e., 0◦, 45◦, 90◦, 135◦
which correspond to f1, f2, f3, f4) are collected in our
implementation. The impact of the number of features will
be discussed at the end of subsection III-C. By using four
features, E(X)i = {Ek(X)i |k = 1, 2, 3, 4} ∈ R

4×1, and

E(X) = [E(X)T1 , E(X)T2 , ..., E(X)TM N ]T ∈ R
4M N×1 (33)
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Fig. 4. The architecture of the proposed multi-directional feature prediction network with pre-activation residual block.

2) Deep CNN for MDFP: For the convenience of construct-
ing MDFP CNN, we reshape E(X) via the reshape function
Sh : R

4M N×1 → R
4×M N as

Sh(E(X)) =

⎡

⎢⎢⎣

E1(X)1 E1(X)2 . . . E1(X)M N

E2(X)1 E2(X)2 . . . E2(X)M N

E3(X)1 E3(X)2 . . . E3(X)M N

E4(X)1 E4(X)2 . . . E4(X)M N

⎤

⎥⎥⎦

= [E1(X), E2(X), E3(X), E4(X)]T (34)

This reveals that we can individually train a CNN for each
feature image Ek(X). Let “↑” be the bicubic up-sampling
operator. Then, the CNN is focused on designing a mapping
function ψEk (Y) : Ek(Y↑)−→ Ek(X). After all ψEk (Y)-s are
obtained, ψE (Y) can be calculated by

ψE (Y)= S−1
h

(
[ψE1(Y), ψE2(Y), ψE3(Y), ψE4(Y)]T

)
(35)

where S−1
h denotes the inversion operator of Sh , which

reshapes the 4 × M N matrix to a 4M N × 1 vector.
To construct an effective feature prediction prior by using

external images for details restoration, an MDFP CNN is
proposed. First, the degraded LR input Y is upscaled as Y ↑
via Bicubic. Second, the multi-directional features of Y ↑
are calculated by feature extraction operators Ek(·)-s. Third,
by using transformation function T (x)= x/510+0.5, the range
of each feature is normalized from [−255 255] to [0 1].
Fourth, each transformed LR feature T (Ek(Y ↑)) is mapped
into the desired HR transformed feature T (Êk(X)) via MDFP
CNN. Finally, the predicted HR feature images {Êk(X)|k =
1, 2, 3, 4} can be obtained via inverse transformation func-
tion T −1(x)= 510x − 255. In the following, the architecture
of the proposed MDFP CNN will be introduced in detail.

For the MDFP CNN, since its input T (Ek(Y ↑)) (the LR
transformed feature) is highly similar to its output T (Êk(X))
(the HR transformed feature), the global residual learning [61]
strategy is preferred. To ease the optimization of the MDFP
CNN, and gain accuracy from increased depth, the local
residual learning strategy is also utilized. Specifically, the first
convolutional layer (64 filters of size 3 × 3 × 1) is used to
extract the features of the input T (Ek(Y ↑)). The output of
this layer is served as the input of the following pre-activation
residual block. The pre-activation residual block in MDFP
CNN consists of two convolutional layers (64 filters of size
3×3×64, where ReLU is placed before each convolutional
layer). These layers predict the local residual and then added

by the local input of the current residual block to obtain the
local output. The analysis of our pre-activation residual block
will be given at subsection III-C.3. After a stack of multiple
pre-activation residual blocks (the residual block number is
empirically set to 9), the output is rectified by the ReLU
function R(·). The last convolutional layer (1 filter of size
3 × 3 × 64, where ReLU is placed before the convolutional
layer) is applied on the residual features to produce the final
residual image of our MDFP network.

Let the trainable parameter set for the k-th deep net-
work be �FP

k , and the residual image be �k = T (Ek(X))−
T (Ek(Y↑)), we define the global residual mapping function as
HFP (T (Ek(Y↑));�FP

k ) : T (Ek(Y↑)) → �k , which predicts
the residual image �k from the LR input T (Ek(Y↑)). At last,
the desired transformed feature T (Êk(X)) can be calculated
via the summation of the LR input T (Ek(Y ↑)) and the HR
residual estimate �k. Denote the N external LR-HR training
pairs as {T (Ek(Yi↑)),T (Ek(Xi ))}Ni=1. As the residual learning
strategy is adopted, the loss function is given by

Lk(�
FP
k )= 1

N
∑N

i=1
‖HFP (T (Ek(Yi↑));�FP

k )−�i
k‖2

2 (36)

We optimize the loss function via ADAM [64]. After the
k-th network is trained, for the LR input Y, the predicted
feature Ek(X) can be expressed as

ψEk (Y)=T −1(HFP (T (Ek(Y↑));�FP
k )+T (Ek(Y↑))) (37)

Finally, after ψEk (Y)-s are obtained, ψE (Y) can be calcu-
lated via Eq. (35).

3) Analysis of the Proposed Network:
(a) Pre-Activation Residual Block for MDFP CNN
As shown in Fig. 4, the number of convolution layers in

the pre-activation residual block is 2. Mathematically, the pre-
activation residual block can be formulated as:

Ul+1 = Ul + H(Ul ,Fl,Bl ) (38)

where Ul is the input feature to the l-th residual block. Fl =
{Fl,m |m = 1, 2} and Bl = {Bl,m |m = 1, 2} are the sets of
weights and biases corresponding to the l-th residual block,
respectively. H(·) represents the local residual function. In our
residual block, H(Ul ,Fl ,Bl) can be formulated as

H(Ul,Fl ,Bl ) = R(R(Ul) ∗ Fl,1 + Bl,1) ∗ Fl,2 + Bl,2 (39)

where R(·) is the ReLU function defined in Eq. (6). It is
not difficult to prove that, for any deeper block ν and any
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Fig. 5. Test images for multi-directional feature prediction via deep CNN.

TABLE I

AVERAGE PSNR (DB) AND SSIM RESULTS ON TEST IMAGES

shallower block l, the feature Uν can be represented as the
feature Ul plus the summation of the outputs of all the
residual functions between blocks ν and l. Mathematically,
the relationship between Uν and Ul can be given by

Uν = Ul +
∑ν−1

i=l
H(Ui ,Fi ,Bi ) (40)

Next, we will prove that the cascade of multiple residual
blocks (Eq.(40)) can lead to nice backward propagation char-
acteristics. For the loss function Lk , we have

∂Lk

∂Ul
= ∂Lk

∂Uν︸︷︷︸
first term

+ ∂Lk

∂Uν
∂

∂Ul

∑ν−1

i=l
H(Ui ,Fi ,Bi )

︸ ︷︷ ︸
second term

(41)

where the first term ∂Lk
∂Uν propagates information back to any

shallower unit l directly without concerning any convolution
layers. While for the second term, it guarantees that the
gradient ∂Lk

∂Ul
will not be canceled out. The reason is that

the second term cannot be always − ∂Lk
∂Uν for all samples. That

is to say, the gradient of a convolution layer will not vanish
even if the weights are arbitrarily small. Because of these nice
properties, the proposed MDFP CNN can be well trained, and
thus it can perform outstanding feature predictions.

(b) Number of Features for MDFP Prior
In order to analyze the impact of the number of fea-

tures, we test the SR performance of different MDFP priors
(with different number of features). The test images are
shown in Fig. 5. The PSNR and SSIM [65] results are given
in Table I, and the PSNR and SSIM gains vs. number of
features are also shown in Fig. 6. We can conclude from
the results that, the improvement in PSNR and SSIM is
directly proportional to the number of feature. When the
number is not larger than 4, the improvements are signif-
icant (0.46 dB/0.0100). While for larger number (> 4),
further increasing the number of features does not significantly
improve the PSNR and SSIM performance (0.02 dB/0.0004).
This is because of the symmetry of features. Symmetrically,
the 180◦, 225◦, 270◦, 315◦ directional features are similar

Fig. 6. The PSNR gain distributions of SR (left) and SSIM gain distributions
of SR (right) experiments over different number of features.

Algorithm 3 Multi-Directional Feature Prediction

to the 0◦, 45◦, 90◦, 135◦ directional features, respectively.
As a result, further increasing the number of features does not
provide additional complementary constraints. Consequently,
for computation efficiency, only four features (corresponding
to 0◦, 45◦, 90◦, 135◦) are used in MDFP.

D. HR Image Estimation via Combined SISR

Since ENLTV is essentially a non-local prior and MDFP is
essentially a local prior, and also to fully exploit the advantages
of both reconstruction- and learning-based SISR methods,
we combine the modeled prior and the learned prior to propose
a combined SISR method. Detailed discussion is given in the
following subsections:

1) Proposed Objective Cost Function: Inserting Eq. (30)
and Eq. (31) into Eq. (7), the objective cost function for our
combined SISR can be formulated as follows:

X̂ = arg min
X

‖Y−DHX‖2
2 + λ‖ ˜WDisp

C I �FwDK
n
(X)‖1

+η‖E(X)− ψE (Y)‖2
2 (42)

To help in developing the solution for the combined SISR

problem, the matrix forms of
˜WDisp

C I and E(X) are needed. Let
Q ∈ R

M N×M N and ME ∈ R
4M N×M N be the matrix forms of

˜WDisp
C I and E(X), respectively, and they can be given by

Q(i, j) =
⎧
⎨

⎩
˜WDisp

C I (i), if j = i

0, otherwise
(43)

ME (i, j) =

⎧
⎪⎨

⎪⎩

1, if j = ξi

−1, if j �= ξi and (i, j) ∈ �i

0, otherwise

(44)
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where ξi = 
 i−0.5
4 � (
x� is the ceiling function, which maps

x to the least integer greater than or equal to x). �i =
{(4ξi − 3, ξi + M), (4ξi − 2, ξi − 1), (4ξi − 1, ξi − M),
(4ξi , ξi + 1)}. Using Q and ME , the cost function can be
reformulated as

X̂ = arg min
X

‖Y − DHX‖2
2

+λ‖QFwDK
n
(X)‖1 + η‖ME X − ψE (Y)‖2

2

= arg min
X

∥∥∥
[

Y
ψE (Y)

]
−
[

DH√
ηME

]
X
∥∥∥

2

2
+λ‖QFwDK

n
(X)‖1

= arg min
X

‖Ỹ − K̃X‖2
2 + λ‖QFwDK

n
(X)‖1 (45)

2) Initial HR Image Estimation for Modeled Prior:
In Eq. (45), Q and wDK

n (i, j)-s in the modeled prior depend
on the unknown X. Therefore, the cost function is non-convex,
which makes Eq. (45) difficult to solve. To overcome this prob-
lem, the traditional SR methods [33], [34], [38], [66] often
start from bicubic interpolation result. Because the estimate
from bicubic interpolation result is not accurate, the data-
adaptive Q and wDK

n (i, j)-s need to be recomputed many
times by using the previous HR image estimates. However,
the multiple recomputing process will be time-consuming.
In our algorithm, as �2-norm is used in L(X), the optimization
of single L(X)-based SISR problem can be implemented
efficiently. In addition, as the MDFP CNN can well predict
the HR feature structures, a good rough estimate X(0) of the
underlying unknown image X can be obtained. Consequently,
we propose an initial HR image estimation via learned prior.
By using the good estimate X(0) for calculating Q and
wDK

n (i, j)-s, the need for regular update is eliminated and our
method is significantly speeded up. Specifically, we formulate
the L(X)-based SISR problem as

X(0) = arg min
X

‖Ỹ − K̃X‖2
2 (46)

which yields the following closed-form solution

X(0) = (K̃T K̃)−1K̃T Ỹ (47)

However, directly calculating (K̃T K̃)−1 requires very large
computational complexity, making the SR problem cumber-
some. Since the minimization problem in Eq. (46) is a convex
quadratic function, we use the Templates for First-Order Conic
Solvers (TFOCS) technique [67] to solve it. After X(0) is
obtained, Q and wDK

n (i, j)-s can be calculated, and they are
fixed during the optimization process.

3) Optimization of the Proposed Cost Function: The
SBI algorithm [68] is extended to solve the problem in
Eq. (45). First, we define a series of new matrices
Wn

i ∈ R
ρ̂i Lp2×M N -s as

Wn
i (a, b)

def=

⎧
⎪⎨

⎪⎩

√
wDK

n (i, ja), b = ja
−√wDK

n (i, ja), b = i

0, otherwise

(48)

where ja is the a-th entry of N̂
R
i . Then, the cost function can

be rewritten as

X̂ = arg min
X

‖ ˜
Y − QXK‖2

2 + λ
∑

i∈� ‖J (ζi )Wn
i X‖2 (49)

Replacing J (ζi )Wn
i X by vi ∈ R

ρ̂i Lp2×1, defining v def=
[vi |i ∈ �] ∈ R

(
∑

i∈� ρ̂i Lp2)×1, and utilizing the Bregman iter-
ation process, Eq. (49) can be rewritten as

(X̂, v̂) = arg min
X,v

‖Ỹ − K̃X‖2
2 + λ

∑

i∈�
‖vi‖2

+μ
∑

i∈� ‖vi − J (ζi )Wn
i X − bi‖2

2 (50)

where bi ∈ R
ρ̂i Lp2×1-s are auxiliary variables, and μ is a

penalty parameter. By letting
⎧
⎪⎪⎨

⎪⎪⎩

b def= [bi |i ∈ �] ∈ R
(
∑

i∈� ρ̂i Lp2)×1

Wn def= [
Wn

i |i ∈ �] ∈ R
(
∑

i∈� ρ̂i Lp2)×M N

�(X) def= ‖Ỹ − K̃X‖2
2

(51)

and defining an extended proximal operator

proxU
γ ϕ(Y)

def= arg min
χ

1

2γ
‖Uχ − Y‖2

2 + ϕ(χ) (52)

the optimization problem in Eq. (50) can be converted into the
following X and v sub-problems:

(a) X Sub-Problem
Given v, the X sub-problem becomes

X(k+1) = proxQWn

1/(2μ)�(v
(k) − b(k)) (53)

This extended proximal operator admits the following
closed-form solution

X(k+1) = (K̃T K̃ + μ(QWn)T QWn)−1

×(K̃T Ỹ + μ(QWn)T (v(k) − b(k))) (54)

Similar to (K̃T K̃)−1 in Eq. (47), directly calculating
(K̃T K̃ + μ(QWn)TQWn)−1 is cumbersome. Since the min-
imization problem in Eq. (53) is strictly convex, it can be
solved by the TFOCS technique.

(b) v Sub-Problem
Given X, the v sub-problem becomes

v(k+1) =
∑

i∈�
proxλ/(2μ)‖·‖2

(J (ζi )Wn
i X(k+1) + b(k)i ) (55)

Since v can be separated into vi -s, each vi can be indepen-
dently obtained via

v(k+1)
i = proxλ/(2μ)‖·‖2

(J (ζi )Wn
i X(k+1) + b(k)i ) (56)

According to [49], the solution of the proximal operator can
be obtained via shrinkage operator

v(k+1)
i = shrink(J (ζi )Wn

i X(k+1) + b(k)i , 2μ/λ) (57)

where shrink(x, ϑ) = max (‖x‖2 − 1/ϑ, 0)x/‖x‖1
2.

Finally, b can be updated by

b(k+1) = b(k) + QWnX(k+1) − v(k+1) (58)

The proposed ENLTV-MDFP method is summarized in
Algorithm 4, and the flowchart is shown in Fig. 7.
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Fig. 7. Flowchat of the proposed method in SISR.

Algorithm 4 Optimization of the Proposed Cost Function in
Eq. (45)

IV. NUMERICAL EXPERIMENTS

In this section, the performance of the proposed
ENLTV-MDFP method are demonstrated in several experi-
ments. First, the advantage of ENLTV-MDFP over other state-
of-the-art SISR methods are demonstrated in both noiseless
and noisy cases. To thoroughly verify the robustness of the
proposed method to a variety of natural images, we conduct
statistical experiments on a large image dataset. In addition,
to further demonstrate the robustness of our method to inac-
curate blur kernels, corresponding experiments are conducted.
Furthermore, the effectiveness of each step in the proposed
method is also demonstrated. Finally, the running times of the
proposed method and other baselines are also reported.

A. Experimental Settings

1) Degradation Models: In our SR experiments, the HR
image is first blurred by a 7×7 Gaussian kernel with standard
deviation 1.5. Then, the blurred image is decimated by a
factor 3. At last, the additive Gaussian noise is added. In the
noiseless case (configuration 1), the noise level is 0, while in
the noisy case (configuration 2), the noise level is 5.

According to [38], the main parameters of ENLTV-MDFP
are empirically set to TI = 15, p = 7, r = 13, h = 24,
L = 10. For configuration 1, the regularization parameters λ, η
and μ are set to 4.5×10−5, 6×10−2 and 1.2×10−2, respectively.
For configuration 2, λ, η and μ are set to 4.1×10−3, 1.776 and
1.18×10−1, respectively.

2) Comparison Baselines: The comparison baselines
include Bicubic, one anchored neighborhood regression-based
methods A+ [17], two deep convolutional network-based
methods SRCNN [69] and VDSR [25], two non-local vari-
ational methods NLTV [52] and AHNLTV-AGD (note that,
we solve the NLTV-driven problem via SBI for fair com-
parison), a sparse representation based method (NCSR) [66],
a joint prior based method (SKR-NLM) [34], a CNN
denoiser prior based method IRCNN [70], and a multi-scale
method (MSEPLL) [71]. For the three learning-based meth-
ods A+ [17], SRCNN [69], and VDSR [25], their models
are retrained properly according to the degradation models
in our tests. The resultant images of different methods are
evaluated perceptually and quantitatively. For the quantitative
comparison, PSNR and SSIM results are reported.

3) Test Images and Datasets: Fig. 8 shows the 10 test
images (Set10) used in our experiments, which are widely
used in SR literature. For color images, different SR methods
are only applied on the luminance component. In order to
evaluate the robustness of ENLTV-MDFP to various images,
we perform statistical experiments on a combined dataset. This
combined dataset is formed by four commonly used datasets
in SR, and contains 250 images of various contents (5 images
from Set5 [69], 14 images from Set14 [69], 100 images from
B100,1 and the rest from Flickr [33]). Referring to [33]

1Available:http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench.
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TABLE II

PSNR (DB) AND SSIM RESULTS ON NOISELESS IMAGES WITH A SCALE FACTOR OF 3

Fig. 8. Test images (Set10). From left to right and top to bottom: Bird
(288 × 288), Butterfly (256 × 256), Chip (244 × 200), Flower (256 × 256),
House (256×256), Leaves (256×256), Parrot (256×256), Plants (256×256),
Woman (228 × 344), Yacht (512 × 480).

and [38], all the test images are cropped to acquire 256 × 256
sub-images.

B. Experimental Results on 10 Test Images (Set10)

In this subsection, we present SR results of all competing
methods on Set10 (configuration 1). The quantitative evalua-
tion results of PSNR and SSIM are shown in Table II. To com-
pare the perceptual quality of the SR results of ENLTV-MDFP
and other baselines, the results of Plants are used as an exam-
ple in Fig. 9. It can be observed that the bicubic interpolation
produces the worst visual quality with blurring and aliasing
artifacts. Although SRCNN, SKR-NLM, A+, and MSEPLL
are more competitive than bicubic in preserving image edges,
their performance is lower than NLTV in terms of both
perceptual and quantitative evaluations. NCSR, IRCNN and
AHNLTV-AGD can better infer the missing high-frequency
details and achieve higher objective assessment performance
than other comparison baselines. However, blurred or distorted
artifacts still exist (e.g., the petal and stem of the plant in
the super-resolved images). VDSR achieves better results than
other baseline methods, but its PSNR/SSIM values are lower
than those of the proposed method. Overall, the proposed
ENLTV-MDFP method achieves the best PSNR/SSIM values

Fig. 9. SR results (×3, noise level 0) of Plants by different methods.
From left to right and top to bottom: Original image, Bicubic (29.85,
0.8333), A+ (33.54, 0.9145), SRCNN (33.50, 0.9097), NLTV (34.06, 0.9183),
VDSR (34.89, 0.9293), NCSR (33.98, 0.9193), SKR-NLM (33.08, 0.9030),
AHNLTV-AGD (34.74, 0.9256), IRCNN (34.22, 0.9263), MSEPLL (33.44,
0.9078), and ENLTV-MDFP (35.22, 0.9313).

and the best visual quality among all these methods. The aver-
age PSNR/SSIM gains over the NCSR, IRCNN, VDSR,
and AHNLTV-AGD are 1.00 dB/0.0112, 0.62 dB/0.0030,
0.41 dB/0.0025, and 0.58 dB/0.0059, respectively. These
experimental results demonstrate the effectiveness of the pro-
posed ENLTV-MDFP method in SR application.

C. Robustness to Noise

Since image noise will make the SR problem more chal-
lenging, we present SR results of all comparison meth-
ods on noisy images (configuration 2) to test the robust-
ness of these methods against noise in this subsection.
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Fig. 10. SR results (×3, noise level 5) of Butterfly by different methods. From
left to right and top to bottom: Original image, LR image, Bicubic (22.58,
0.7652), NCSR (27.07, 0.8957), VDSR (28.12, 0.9068), AHNLTV-AGD
(28.12, 0.9062), IRCNN (27.23, 0.8968), and ENLTV-MDFP (28.53, 0.9173).

TABLE III

AVERAGE PSNR (DB) AND SSIM RESULTS ON NOISY IMAGES
WITH A SCALE FACTOR OF 3 (NOISE LEVEL: 5)

According to the experiment in subsection IV-B, VDSR,
AHNLTV-AGD, IRCNN, and NCSR perform the 2nd, 3rd,
4th, and 5th best, respectively. We compare the proposed
ENLTV-MDFP method with these four methods, and the corre-
sponding average PSNR/SSIM scores are reported in Table III.
For the visual quality comparison, the SR results of Butterfly
are shown in Fig. 10. Specifically, in terms of the quantitative
evaluation, IRCNN and NCSR perform on par with each
other, while the edges are smoothed out to some extent.
AHNLTV-AGD and VDSR can achieve relatively good perfor-
mance with visually pleasant SR results. Overall, the proposed
ENLTV-MDFP method has the best objective performance.
Moreover, the recovered edges and high-frequency details by
our method are much more accurate. For example, in our
super-resolved Butterfly image, the edges and details of the
patterns look much clearer than the results of the baseline
methods. Consequently, the robustness of the proposed method
to noise is well verified.

D. Experimental Results on Image Dataset

To comprehensively test the effectiveness and robustness
of the proposed ENLTV-MDFP approach, we perform exten-
sive experiments on the combined image dataset that con-
tains 250 images in this subsection. The 2nd, 3rd, 4th, and
5th best comparison algorithms in Section IV-B (i.e., VDSR,
AHNLTV-AGD, IRCNN, and NCSR) are selected as baselines.

We test these methods in both configuration 1 and con-
figuration 2. The average objective results for these methods
are tabulated in Table IV. We observe that, in both noiseless
and noisy cases, the proposed ENLTV-MDFP method outper-
forms the competing methods. For configuration 1, the aver-
age PSNR/SSIM gains of the ENLTV-MDFP over NCSR,
IRCNN, VDSR, and AHNLTV-AGD are 0.85 dB/0.0164,

TABLE IV

AVERAGE PSNR (DB) AND SSIM RESULTS
FOR ×3 MAGNIFICATION ON DATASET

TABLE V

AVERAGE PSNR (DB) AND SSIM RESULTS OF DIFFERENT

EXTENDED VERSIONS ON SET10

Fig. 11. The PSNR gains of different extended versions for each image (left)
and the graphical illustration of the PSNR gain of each step (right).

0.47 dB/0.0058, 0.11 dB/0.0016, and 0.50 dB/0.0106,
respectively. In configuration 2, the average PSNR/SSIM
gains of the ENLTV-MDFP over NCSR, IRCNN, VDSR,
and AHNLTV-AGD are 0.58 dB/0.0171, 0.46 dB/0.0139,
0.39 dB/0.0222, and 0.40 dB/0.0163, respectively. The SR
results on dataset verify the robustness and superiority of the
proposed ENLTV-MDFP method.

E. Effectiveness of Each Step in ENLTV-MDFP

In this subsection, four extended methods are used to
validate the effectiveness of each step in ENLTV-MDFP,
including AHNLTV, ENLTV0 (improved AHNLTV with DK
scheme), ENLTV (improved ENLTV0 with SGSR scheme),
and ENLTV-MDFP (combining ENLTV with MDFP). We con-
duct experiments on Set10 in configuration 1, and report the
average PSNR and SSIM scores of different extended versions
in Table V. In addition, graphical illustrations of PSNR gains
are given in Fig. 11. We can see from Fig. 11 that the
average PSNR gain of ENLTV-MDFP over AHNLTV is as
high as 0.93 dB. Moreover, for visual comparison, the results
of Leaves are presented in Fig. 12.

1) Effectiveness of DK Scheme: We compare ENLTV0 with
the original AHNLTV prior to verify the effectiveness of the
DK scheme. As observed in Table V and Figs. 11 and 12,
ENLTV0 outperforms AHNLTV in terms of PSNR and SSIM
values (the average PSNR/SSIM gains are 0.10 dB/0.0004),
which verifies the effectiveness of the DK scheme.
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Fig. 12. SR results (×3, noise level 0) of Leaves by different extended
versions of the proposed ENLTV-MDFP method. From left to right and top
to bottom: Original image, Bicubic (21.97, 0.7425), AHNLTV (27.75, 0.9312),
ENLTV0 (27.93, 0.9331), ENLTV (28.46, 0.9408), and ENLTV-MDFP (29.51,
0.9501).

2) Effectiveness of SGSR Shceme: First, we compare
ENLTV0 with its normalized version. However, according
to our tests, the PSNR/SSIM gains of ENLTV0 over its
normalized version is minimal (only about 0.02 dB/0.0001).
It reveals that WSum

C I is not powerful in measuring the group
similarity reliability. In contrast, with the SGSR scheme,
ENLTV can further produce sharper edges, providing signif-
icant improvements (0.29 dB/0.0031) over ENLTV0. Conse-
quently, the effectiveness of the SGSR scheme is verified.

3) Effectiveness of Combining ENLTV With
MDFP: Combining ENLTV with MDFP can achieve
0.54 dB/0.0045 improvement over using only the separated
ENLTV prior. In terms of the visual quality, the combined
method can produce sharp edges and fine structures, and
suppresses the artifacts well. It demonstrates that the
combination of ENLTV and MDFP can fully exploit their
complementary advantages, and is helpful to enhance the
quality of super-resolved images.

F. Discussion on Different Initialization Strategies

To show the effectiveness of the proposed initial HR estima-
tion strategy in terms of both SR accuracy and computational
time, we conduct the following experiments. Two different
initialization strategies with different outer iteration number
are tested on Set10. This implies that the values of Q and
wDK

n (i, j)-s are computed iteratively. Fig. 13(a) plots the
progression curves of the PSNR results achieved by solving
the objective function in Eq. (45) with initial HR estimation
strategy and conventional bicubic strategy (the corresponding
two average PSNR curves (labeled in pink) of Set10 are also
plotted). The magnified views of the average PSNR in the
rectangle regions of Fig. 13(a) are shown in Figs. 13(b)-(d).
For the bicubic strategy, the PSNR curves converge when the
outer iteration number reaches 3, and there is little PSNR
improvement when the outer iteration number is larger than 3.
For the initial HR estimation strategy, the PSNR curves almost
converge even when the outer iteration number is 1. Additional
iteration can achieve about 0.03dB on average. We conclude
that the initial HR estimation strategy is more efficient and
effective than the bicubic strategy in solving the objective

Fig. 13. The effect of different initialization strategies on SR accuracy.
(a) Comparison between initial HR estimation strategy and bicubic strategy
in terms of the progression of PSNR. (b) Magnified view of average PSNR
in the rectangle region. (c) Magnified view of PSNR for Butterfly image in
the rectangle region. (d) Magnified view of PSNR for Leaves image in the
rectangle region.

function in Eq. (45). Obviously, a larger iteration number
requires a longer running time. For example, when the outer
iteration number is 3, the running time is 3 times longer than
that when the outer iteration number is 1. Therefore, to best
balance the SR quality and running time, we adopt initial
HR estimation with iteration number 1 for the sake of fast
implementation.

G. Robustness to Inaccurate Blur Kernels

Since all the competing methods in previous experiments
belong to non blind SR, it is assumed that the blur kernel is
known. In order to test the robustness of these methods when
the blur kernel is inaccurate, the following experiments are
carried out. To simplify the analysis, we only consider the esti-
mation error of standard deviation. Specifically, the Gaussian
kernel in subsection IV-A is used as an inaccurate estimation
kernel in these tests. According to [37], the ratio pte is used
to metric the estimation error, and it is defined as

pte = (σe − σt )/σt × 100% (59)

where σt is the true standard deviation, and σe = 1.5
is the estimated standard deviation. Five competing meth-
ods, including ENLTV-MDFP, NCSR, IRCNN, VDSR, and
AHNLTV-AGD, are tested for five different pte-s (i.e., −20%,
−10%, 0%, 10%, 20%). The average PSNR/SSIM results
(Configuration 1) vs. pte are given in Fig. 14. We observe that
the performance of all SR methods is decreased as the esti-
mation error increases. Among them, the CNN denoiser prior
based method IRCNN is largely affected by pte, and its SR
ability will significantly decrease with a larger |pte|. However,
the results suggest that the ENLTV-MDFP method consistently
outperforms NCSR, IRCNN, VDSR, and AHNLTV-AGD in
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Fig. 14. Average PSNR and SSIM results of reconstructed HR images on
Set10 with inaccurate blur kernels.

Fig. 15. Average PSNR/SSIM scores (Configuration 1) vs. running time (s).

all scenarios. Overall, the results of these experiments demon-
strate the robustness of the proposed method to inaccurate blur
kernels.

H. Discussion on Computational Time

To comprehensively evaluate the computational time of the
proposed method, the results of PSNR/SSIM vs. running times
of each method are reported in Fig. 15. As depicted in Fig. 15,
for Set10, on an Intel Core i7 7700K CPU in Linux platform,
ENLTV-MDFP achieves the best SR performance with an
average of 72.1s. MSEPLL (171.4s), SKR-NLM (152.8s),
NCSR (185.4s) and AHNLTV-AGD (187.6s) takes much more
running times than the proposed method, and their PSNR
and SSIM are also much lower. Although, A+, SRCNN,
IRCNN (CPU mode), VDSR (CPU mode), and NLTV are
faster than ENLTV-MDFP, their performance is relatively
lower. In terms of the running times, we can conclude that the
ENLTV-MDFP method is more efficient comparing to many
state-of-the-art reconstruction-based SR methods, although it
is relatively slower than those of learning-based methods.
Overall, the proposed method produces the best SR results
with reasonable computational time.

V. CONCLUSION

In this paper, we present a novel SR method
(ENLTV-MDFP) by integrating the non-local variational
prior and the learned local multi-directional feature prior
into the reconstruction framework. The non-local similarity
is modeled by the DK and SGSR-based variational method
using the HR image itself (ENLTV), and the feature prior
is learned by the deep CNN using external images (MDFP).
Overall, the proposed combined SR framework fully exploits
the advantages of these two complementary regularization
terms, and achieves state-of-the-art SR performance. The
quantitative and visual evaluation demonstrates that the

proposed ENLTV-MDFP method achieves significant
improvement over the competing methods. In our future
work, we plan to investigate other methods to generate
direction features such as wavelet features. We will also
explore the extensions of the proposed framework on other
image restoration applications, such as deblurring, denoising,
deblocking, inpainting, and SR of compressed images.
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