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Random Forest With Learned Representations
for Semantic Segmentation
Byeongkeun Kang and Truong Q. Nguyen, Fellow, IEEE

Abstract— We present a random forest framework that learns
the weights, shapes, and sparsities of feature representations for
real-time semantic segmentation. Typical filters (kernels) have
predetermined shapes and sparsities and learn only weights.
A few feature extraction methods fix weights and learn only
shapes and sparsities. These predetermined constraints restrict
learning and extracting optimal features. To overcome this
limitation, we propose an unconstrained representation that is
able to extract optimal features by learning weights, shapes, and
sparsities. We then present the random forest framework that
learns the flexible filters using an iterative optimization algorithm
and segments input images using the learned representations.
We demonstrate the effectiveness of the proposed method using a
hand segmentation dataset for hand-object interaction and using
two semantic segmentation datasets. The results show that the
proposed method achieves real-time semantic segmentation using
limited computational and memory resources.

Index Terms— Semantic segmentation, random forest, feature
extraction, object segmentation, real-time systems.

I. INTRODUCTION

ACCURATE and efficient semantic segmentation is a
fundamental task in a variety of computer vision

applications including autonomous driving, human-machine
interaction, and robot navigation. Reducing computational
complexity and memory usage is important to minimize
response time and power consumption for portable devices
such as robots and virtual/augmented devices. It is also bene-
ficial for vehicles and robots to navigate in actively changing
environments and for human-machine interaction devices to
communicate without delay. However, it is challenging to
achieve accurate and efficient semantic segmentation because
every pixel needs to be classified using limited computational
resources.

To achieve accurate and efficient pixel-wise classification,
Shotton et al. presented a random forest-based method and
applied it for semantic segmentation and body pose estima-
tion in [1]–[3]. This work has been broadly employed in
many related applications [4]–[7] and in Microsoft Kinect [8].
To improve accuracy in semantic segmentation, convolu-
tional neural network-based methods have been proposed
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Fig. 1. Illustration of the random forest with learned representations for
semantic segmentation. The top images show input images (a color image and
a depth map). The bottom image shows an expected output (class label for
each pixel). The rectangles with grid show examples of learned representations
with various shapes, sparsities, and weights. Red bounding boxes present input
data points, and blue color squares denote the offset points that are used to
compute features.

in [9]–[14]. Part of the reason that deep learning-based
methods outperform other methods is its ability to learn
fine representations along with the hierarchical structure and
non-linear activations. The methods using random forest and
using deep neural networks outperform most of the other
methods in the task of semantic segmentation in terms of
efficiency and accuracy. Between two approaches, random
forest-based methods have an advantage in computational
complexity and memory usage while deep learning-based
methods achieve higher accuracy. Therefore, we propose a
random forest framework that employs unconstrained repre-
sentations, learns optimal features by using an optimization
algorithm, and inferences in real-time using limited computa-
tional and memory resources.

The proposed method can be applied to any input (e.g. color
image, depth map, point cloud) and for any pixel-wise
classification task. We validate the proposed method in the
task of semantic segmentation and hand segmentation for
hand-object interaction. Semantic segmentation is needed in
many applications such as autonomous driving and robot
navigation [15]–[19]. We apply the proposed method to a
road scene dataset [15] and an indoor scene dataset [20],
and use color images along with disparity/depth maps as
input. Hand segmentation is also a fundamental task in
human-machine interaction that is demanded in virtual real-
ity (VR), augmented reality (AR), robotics, and user interfaces
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in an automobile [4]–[6], [21]–[35]. We apply the method to
a depth map-based hand segmentation dataset for hand-object
interaction [14]. By experiments, we show that the proposed
method can be applied to real-time semantic segmentation task
using limited computational and memory resources.

In this paper, we propose the novel unconstrained repre-
sentation that is able to learn weights, shapes, and sparsities
in Section III-B. Then, we propose a random forest framework
that learns the weights, shapes, and sparsities of the representa-
tion and inferences input data using the learned representation
in Section III-C. The section explains selecting training data
using bootstrap aggregation and boosting, learning splitting
functions using particle swarm optimization, and inferencing
input images. In Section IV, we demonstrate the effectiveness
of the proposed method on three tasks: road scene semantic
segmentation, indoor scene semantic segmentation, and hand
segmentation for hand-object interaction. We use publicly
available Cityscapes dataset [15], NYUDv2 dataset [20], and
HOI dataset [14].

In summary, the contributions of our work are as
follows:

• We propose the unconstrained representation that is able
to represent any weights, shapes, and sparsities.

• We develop the random forest framework that learns the
weights, shapes, and sparsities of the representation by
using particle swarm optimization.

• We verify the effectiveness and efficiency of the proposed
method on semantic segmentation and hand segmentation
tasks.

II. RELATED WORKS

A. Per-Pixel Classification Using Random Forest

Random forest is an ensemble learning method and consists
of a set of decision trees [36]–[38] as shown in Figs. 1
and 2. It is robust to noisy and variant data because of
the combination of multiple trees with varying features and
splitting criteria. Also, it is computationally less complex than
typical neural networks. Part of the reason is that an input
data is processed only log-scale portion of each tree based on
the conditions in the ancestral nodes (see blue dotted lines
in Figs. 1 and 2).

Shotton et al. presented semantic texton forest for image
categorization and semantic segmentation [1]. In order
to avoid expensive computations of local descriptors
(e.g. HOG [39], SIFT [40]) or filter-bank responses, they
employed splitting functions using the value of a single
pixel, the sum, the difference, and the absolute difference
of a pair of pixels. The method was extremely fast com-
paring to k-means clustering or nearest-neighbor assignment
using feature descriptor. Schroff et al. investigated using not
only local features but also global and context-rich features
in the random forest for semantic segmentation [41]. They
showed that combining multiple features improves accuracy,
and further demonstrated that relaxing constraints on fea-
tures leads to higher classification accuracy. Shotton et al.
extended the random forest [1], [42] to real-time body pose
estimation by classifying each pixel to body parts [2], [3].
They employed the depth difference between a pair of pixels

Fig. 2. Random forest. Red, black, and green circles denote root nodes, split
nodes, and leaf nodes, respectively. At leaf nodes, the forest estimates and
uses the conditional probability of being each class given the specific leaf
node.

as a feature. The feature fulfilled depth invariance property
by calculating the location of the pixels considering depth
information. This work was extended to hand segmenta-
tion by Tompson et al. [6]. Sharp et al. [5] employed the
memory-efficient random forest method [43] to predict initial
hand pose in hand tracking. Kang et al. [7] proposed the
two-stage random forest method consisting of detection and
segmentation for hand segmentation in hand-object interaction.

The earlier works used hand-crafted features such as local
descriptors (e.g. HOG, SIFT) or filter-bank responses [44].
Then, relatively recent works used pixel value difference
as a feature that learns offsets while using fixed weights
(+1 and −1) [2], [3], [6], [7], [42]. As investigated on the
benefits of relaxing constraints of features [41], we further
relax constraints of feature representations and propose the
unconstrained representation. We enable learning optimal rep-
resentation by learning weights, shapes, and sparsities of the
proposed representation. Then, the learned feature is employed
in the random forest framework for efficiency to achieve
real-time inferencing.

B. Per-Pixel Classification Using Deep Learning

Deep learning-based methods achieved state-of-the-art
accuracy in per-pixel classification recently. Long et al.
proposed fully convolutional neural networks (FCN) for
semantic segmentation by converting fully connected layers
to convolutional layers in the neural networks for image
classification [9], [45]. Consequently, it takes an input of
arbitrary size and produces an output of the corresponding
size with pixel-wise prediction. Additional efforts have been
made to achieve higher accuracy in [10]–[14] and [46].
Zheng et al. [11] proposed the convolutional neural networks
that combine the strength of convolutional neural networks and
conditional random field (CRF)-based probabilistic graphical
modeling. They formulated CRF as recurrent neural networks
and attached the recurrent neural networks following FCN.
Chen et al. [12], [13] improved semantic segmentation using
convolution with upsampled filters, atrous spatial pyramid
pooling, and fully connected CRF. Yu and Koltun [10] pro-
posed an additional context module to aggregate multiscale
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information without losing resolution. Kang et al. [14] pre-
sented the depth-adaptive deep neural network that compen-
sates depth variation to achieve depth-invariance property
for semantic segmentation. Wang et al. [46] proposed the
non-local operation that captures long-range dependencies to
improve the accuracy of object detection/segmentation as well
as video classification.

Several other neural networks were proposed considering
computational complexity [47], [48]. Badrinarayanan et al.
[47] proposed an efficient convolutional neural network in
terms of memory and computational time during inference.
The network consists of an encoder network and a decoder
network. The encoder network records pooling indices in
max-pooling steps and the corresponding decoder network
uses the recorded indices to perform nonlinear upsampling.
Paszke et al. [48] presented an efficient neural network
to achieve real-time semantic segmentation. They analyzed
various network architectures including early downsampling,
nonlinear operations, and factoring filtering.

While neural network-based methods achieve state-of-the-
arts accuracy by learning optimal weights and biases in
multiple layers with nonlinear activation functions and by
extracting meaningful information from input data, they
demand high computational and memory resources. Hence,
we aim to present a random forest-based framework that is
able to process real-time semantic segmentation using only
limited computational and memory resources (e.g. low-end
GPU or embedded system). Moreover, while typical neural
networks use a hand-picked shape and sparsity [10]–[13],
we learn shapes and sparsities along with weights by using
an optimization algorithm.

C. Learning Representation

In random forest, learning two offset points for a feature
representation has been one of the most popular representation
learning methods [2], [3], [6], [7], [42]. While it can learn any
offset vectors to represent various shapes and sparsities, it has
constraints of fixed weights (+1 or −1) and of using only two
offset points.

Typical neural networks learn representations using dense
filters with various filter-sizes [49]–[51]. Recently, dilated
convolution (also known as atrous convolution) was intro-
duced to learn sparse representations [13]. The sparse convo-
lution was also applied in depth-adaptive convolution to learn
depth-invariant representations [14]. While these representa-
tions have square shapes, active convolution and deformable
convolution were presented to learn representations with var-
ious shapes in [52] and [53]. Both methods learn shapes
of convolution filters using a training dataset. Active con-
volution defines learnable position parameters to represent
various forms of receptive fields [52]. Deformable convolution
uses the offset field similar to the position parameters [53].
It computes the offset field using the input feature map at
each spatial location.

In this work, we aim to learn weights, shapes, and sparsities
of descriptors by proposing an unconstrained representation
and by applying particle swarm optimization. Comparing

to learning two offset points in random forest, we also
learn weights and the number of offset points. Concerning
the recent convolution layers, we further learn the number
of offset points. Moreover, the proposed representation has
depth-invariance property as offset points are computed with
the consideration of the distance from a camera.

III. PROPOSED METHOD

In this section, we introduce an unconstrained representation
that is able to represent any weights, shapes, and sparsities
in Section III-B. The unconstrained filter is proposed to learn
optimal filters for a given task and dataset during training.
We employ the proposed representation in the framework of
random forest in Section III-C. We describe details about
training procedure including learning optimal representations
and selecting training data points in Section III-C1 and about
inference method in Section III-C2.

A. Notation

Let X ∈ R
p×q and Y ∈ R

p×q×nc be the matrices denoting
an input image and an output probability map of a random
forest where p, q , and nc represent the height, the width, and
the number of classes, respectively. At a location x ∈ R

2 on
the image X , the intensity is represented as X x . Also, let T ,
Ti , and nt indicate the random forest, the i -th decision tree,
and the number of trees in the forest.

T = {Ti |i ≤ nt and i ∈ Z
+}. (1)

B. Unconstrained Representation

Learning optimal representation is essential to achieve
higher accuracy and to avoid unnecessary use of compu-
tation and memory. Hence, we design an unconstrained
representation that is able to learn optimal weights, shapes,
and sparsities. In the proposed framework, the unconstrained
representation’s weights, shapes, and sparsities are learned at
each node to split data points of different classes to separate
child nodes as shown in Fig. 1. Moreover, the representation
extracts depth and shift invariant features by compensating the
associated changes as described in Fig. 3. Hence, the proposed
novel representation improves accuracy and reduces computa-
tional complexity and memory usage.

Given an input data (spatial location) x and the correspond-
ing input image and depth map (X , D), the feature f (·) is
defined as follows:

f (x, X, D) =
n f�

i=1

wi X x+ui /Dx ,h (2)

where n f is the number of data points used to compute each
feature; w and u ∈ R

2 are a weight and an offset parameter
vector, respectively; h is the channel index of X .

In details, the offset data point x + u/Dx (the other
end-point from a red circle x in Fig. 3) is determined based
on x, u, and Dx . The weight w controls the influence of
the information at the offset data point X x+u/Dx . The feature
response is computed by the weighted summation of the offset
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Fig. 3. Examples of the proposed feature representation. Each figure shows
two different features where the same color line denotes the same feature.
Each red circle represents a data point x. The length of each line denotes
the magnitude of each offset ui /Dx considering the depth Dx at the data
point x. The end-point of each line shows each offset point x+ui /Dx used to
compute the corresponding feature. The feature is computed by Eq. (2) where
the training algorithm in III-C learns weights (coefficients) w, offsets u, and
the number n f of data points.

Fig. 4. Examples of the proposed representation and the representation
of a convolutional layer in convolutional neural networks. (a) Feature in
convolution layer. (b) Proposed feature. The proposed representation is not
constrained by a specific shape. Color squares denote offset points x + u/Dx
used to compute the feature, and the red bounding boxes represent the data
points x.

data points. All the parameters including the number n f of
data points, the weights w, the offsets u, and the channel
h are learned in the training procedure in Section III-C1.
Each learned representation consists of 4 × n f + 1 parameters
where the factor 4 includes a weight, two offset parameters,
and a channel index and the addition of 1 is for the num-
ber of data points. The proposed representation is described
in Figs. 3 and 4.

If any offset data point x + u/Dx is beyond the boundary
of the image, the intensity X x+u/Dx is replaced by a constant
(the maximum intensity of the input image X if X is a depth
map; 0 otherwise).

X x+u/Dx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X x+u/Dx if x + u/Dx ∈ Z
+ and

x + u/Dx ≤ (p, q),

max(X) else if X is a depth map,

0 otherwise.

(3)

Obviously, when an input image X is a depth map D,
the feature can be expressed as follows:

f (x, X) =
n f�

i=1

wi X x+ui/Xx . (4)

Additionally, if depth information is not available,
the requirement of depth data can be relaxed by sacrificing the
property of depth invariance. The relaxed feature is defined as
follows:

f (x, X) =
n f�

i=1

wi X x+ui . (5)

C. Random Forest

Random forest consists of a set of decision trees as shown
in Figs. 1 and 2. It is robust to noisy and irregular data
because of the combination of multiple trees with varying
features. It is also computationally less complex than typical
neural networks since, in the inference procedure, each input
data is processed using only small portion of the forest based
on the conditions in ancestral nodes (see blue dotted lines
in Figs. 1 and 2).

Each decision tree in random forest is composed of a root
node, splitting nodes, and leaf nodes (see Fig. 2). The input
of each tree is the location x ∈ R

2 of an input data and the
corresponding input image and depth map (X , D). Given the
input (x, X, D) at a root node, the input data is classified to a
child node based on the splitting criteria fn(x, X, D) ≶ θ
where fn(·) extracts a learned feature at the node n. The
classification to a descendant node is terminated when the
input data reaches a leaf node. At the leaf node, the conditional
probability p(c| fn(x, X, D) ≶ θ for ∀n until the leaf node)
of being each class c is learned in a training stage and is
used in an inference stage. The leaf nodes are also learned in
a training procedure. For more details about random forest,
we refer readers to [36]–[38] and [42].

1) Training: In a training stage, the random forest learns
a splitting criteria fn(x, X, D) ≶ θ at each splitting node n
and a conditional probability distribution p(c| fn(x, X, D) ≶
θ for ∀n until the leaf node) of being each class c at each leaf
node. The splitting criteria at a node n is denoted as follows:

fn(x, X, D) =
n f�

i=1

wi X x+ui/Dx ≶ θ. (6)

In (6), one redundant parameter can be eliminated by dividing
each side by θ while the data split remains equivalent.

n f�

i=1

wi

θ
X x+ui/Dx ≶ 1,

n f�

i=1

w�
i X x+ui/Dx ≶ 1 where w�

i = wi

θ
. (7)

Thus, the training algorithm only needs to learn the parameters
in the representation function f (·) while the splitting boundary
is always 1. In the rest of this paper, a weight w represents w�.
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Fig. 5. Example of boosting and bootstrap aggregating. (a) Depth map. (b) Sampling probability ps(·) in the first iteration of boosting. (c) Sampled data
points in the first iteration. (d) Inferred probability using the first set of learned trees. (e) Ground truth label. Gray and black color denote hand and non-hand
class, respectively. (f) Sampling probability ps(·) in the second iteration of boosting. (g) Sampled data points in the second iteration. (h) Inferred probability
using the first and the second set of trees. Magenta and yellow color represent non-hand and hand class, respectively. Brighter color in (b) and (f) denotes
higher sampling probability ps (·). Brighter color in (d) and (h) represents the higher probability of being hand class. The number of sampled data points per
image is 250 for each class in this example.

In the following paragraphs, we introduce the strategy
of selecting training data using bootstrap aggregating and
boosting. We then present the method of learning representa-
tions using particle swarm optimization. Finally, we describe
the condition for determining leaf nodes and the process of
learning conditional probability distribution.

Bootstrap Aggregating: Bootstrap aggregating (bagging) is
to amalgamate multiple classifiers trained using randomly
selected training data sets. This method improves robustness
and accuracy by integrating multiple classifiers with variance
caused by the randomly selected training data. Given the
training data sets X of images, the bagging algorithm selects
random sets Xi ⊂ X of images for the i -th tree. Then,
the algorithm samples nd data points (pixels) for each class
from the images X ∈ Xi . Thus, each tree is trained using
nd × nc data points where nc is the total number of classes.

For hand segmentation, we sample the same number of
data points for each image and for each class to consider
diverse images equally regardless of the sizes of hands, etc.
For semantic segmentation, since all objects do not appear on
all the images, we only constrain the same number of data
points for each class.

Boosting: Boosting is to combine a set of weak classifiers
to form a stronger classifier. Especially, adaptive boosting
is learning weak classifiers based on the obtained result by
applying previously trained weak classifiers [54]. We apply
adaptive boosting at each set of trees by adjusting the sampling
of training data based on the segmentation result at the stage.

As explained in the bagging, a random set Xi ⊂ X of
images is selected for the i -th tree Ti . Then, nd data points x
are sampled for each class c. The proposed boosting algorithm
adjusts this sampling of data points x for each set of trees. For
the first set of trees, data points x are sampled randomly with
uniform distribution for each class. Thus, the probability ps(·)

of being sampled for a data point x of a class c is as follows:

ps(x) = nd

ndc nX
(8)

where ndc is the number of the data points of a class c in the
image X for hand segmentation and in the set X1 of images
for semantic segmentation, respectively. X is the image that
x belongs to. nX is 1 for semantic segmentation and is the
number of images in X1 for hand segmentation.

After training the first set of trees, the sampling probability
ps(·) is updated to train the second set of trees more effec-
tively. It is achieved by adjusting ps(·) to sample more data
points with higher errors. Hence, ps(·) is increased for the data
points with a high error and is decreased for the data with a
low error. Given the learned set of trees T until the current
iteration, an inference is processed to estimate the probability
pc(c|x, X, D) of being a target class c for the data in the
training dataset X . Then, ps(·) is updated as follows:

ps(x) = 1 − pc(c|x, X, D). (9)

By using the data points sampled based on the updated ps(·),
the next set of trees is trained. ps(·) is adjusted repeatedly at
each iteration until the training terminates.

Fig. 5 shows a visual example of boosting and bootstrap
aggregating. The first row and the second row show the first
iteration and the second iteration of boosting, respectively.
In the first iteration, ps(·) in (b) is the same for all data
points of the same class. Thus, the sampled data points
in (c) are distributed uniformly. In the second iteration, ps(·)
in (f) varies for each data point depending on the inferred
probability in (d) that is obtained using the first set of trees.
Consequently, the sampled data points in (g) are distributed
based on ps(·) in (f).
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Particle Swarm Optimization: Particle swarm optimiza-
tion (PSO) is applied to learn a feature representation that
splits the data points of different classes into separate child
nodes at each splitting node. PSO is selected to find a
more optimal solution in a high-dimensional parameter space
(R3×n f · Z

1 if X is a depth map, and additional Z
n f if X is

a color image).
Assuming X is a depth map, a representation parameter

vector p ∈ R
3×n f · Z

1 consists of the number n f ∈ Z
+ of

data points and a weight w ∈ R and an offset parameter
vector u ∈ R

2 for each data point. Thus, the total number
of parameters is 3 × n f + 1. To limit the solution space
(R3×n f ·Z1), the maximum number of data points n f is chosen
as 9 which is equivalent to the number of data points in a
filter (kernel) with the size of 3×3. It is also the most common
size of a kernel in convolutional neural networks.

In the first iteration, the algorithm generates 100 offset can-
didates u and 100 weight candidates w where the candidates
are sampled from the uniform distribution. Then, the algorithm
tries the combinations of the 9 different numbers n f of data
points, 100 offset candidates u, and 100 weight candidates w,
totaling 90,000 particles (candidates). By applying the parti-
cles, the optimization algorithm learns the global best state qg
that is the best solution among the entire particles. To simplify
and expedite training, the number n f of data points is decided
as the number of data points of the global best state qg in the
first iteration. Also, among 10,000 particles, 100 particles are
chosen by selecting the best weight candidate for each offset
candidate. It is feasible since 10,000 particles are generated by
the combinations of 100 offset candidates u and 100 weight
candidates w.

From the second iteration, the 100 particles are used to find
the optimal solution. Let q ∈ R

3×n f represent each particle
consisting of weights w and offsets u. At an iteration t ,
the particles qt are first updated using the particles qt−1,
the personal best states qt−1

p , and the global best state qt−1
g

at the previous iteration t − 1. The personal best state qt
p is

the best state of each particle until the current iteration t . The
global best state qt

g is the best state among all the particles
until the current iteration t . The particles at an iteration t are
updated as follows:

q t−1
p,i = {q�t

i |�t = argmin
t

L(qt
i )},

q t−1
g = {q�t

�i |(�i,�t) = argmin
i,t

L(qt
i )},

q t
i = q t−1

i +αp(qt−1
p,i −qt−1

i )+αg(qt−1
g −qt−1

i ) (10)

where i denotes the index for each particle. L(·) is the
objective function in (12). αp and αg are the weights towards
the personal best state q p and the global best state qg . Both
parameters (αp and αg) are randomly generated from the
Normal distribution N (μ, σ 2) as follows:

�α ∼ N (1.0, 0.25),

α = max(0,�α) (11)

where μ and σ represent a mean and a standard deviation.
The iteration of PSO is terminated when the loss L(·) is not
decreased at each iteration or after maximum 100 iterations.

The objective function L(·) consists of a term for classifi-
cation loss and two terms for regularization. The classification
loss is to evaluate a representation’s ability of separating the
data points of different classes to separate child nodes. The
regularization is to prefer smaller weights w and the smaller
number n f of data points.

L( p) = C( p)� 	
 �
classification loss

+ λw

n f�

i=1

wi
2 + λn f n f

� 	
 �
regularization

= −
�

h

�

c

n(h)�
h n(h)

p(c|h) log p(c|h)

� 	
 �
classification loss

+ λw

n f�

i=1

wi
2 + λn f n f

� 	
 �
regularization

(12)

where h is an index for a child node (e.g. left child, right
child); c is an index for a class; n(h) denotes the number of
data points in a child node h; p(c|h) is the probability of being
the class c at the node h; λw and λn f are weights for each
regularization term.

After learning an optimal representation at a splitting node,
the data is split into child nodes. If the child node does not
meet the condition for becoming a leaf node, learning repre-
sentation and splitting to child nodes are repeated. Otherwise,
splitting is terminated, and a leaf node is formed.

Leaf Node: A leaf node is formed based on the following
criterias: (1) the maximum depth of a tree, (2) the probability
distribution p(c|h), and (3) the number of training data x
at the node. In details, a leaf node is generated if (1) the
current depth of a tree is deeper than the maximum depth;
(2) the probability at the node is considerably confident for a
class; (3) the number of remaining training data is too small.
When a leaf node is formed, the conditional probability is
stored for inference processing. The conditional probability
p(c| fn(x, X, D) ≶ θ for ∀n until the leaf node) is computed
using the number of data points for each class at the leaf
node h.

p(c| fn(x, X, D) ≶ θ for ∀n until the leaf node)

= p(c|h) = n(h, c)�nc
c=1 n(h, c)

(13)

where n(h, c) represents the number of data points for the
class c at the leaf node h.

2) Inference: Given the trained random forest T , each data
point x on an image X is classified to child nodes using each
tree until it reaches a leaf node. When it reaches a leaf node
using each tree Ti , the learned conditional probability dis-
tribution pTi (c| fn(x, X, D) ≶ θ for ∀n until the leaf node)
of being each class c at the leaf node is loaded. Then,
the conditional probability distributions from the entire trees
Ti ∈ T are averaged to estimate the inferred probability
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Fig. 6. Scores depending on decision boundary. The scores are computed
on the validation set of hand segmentation data using the proposed method
(30 trees) without the bilateral filtering.

pc(c|x) of the data point x being a class c.

pc(c|x) = 1

nt

nt�

i=1

pTi (c| fn(x, X, D) ≶ θ

for ∀n until the node) (14)

where nt is the number of trees in the random forest T .
Modified Bilateral Filter: Since the probability pc(c|x) is

predicted for each pixel independently, the probability can
be stabilized considering nearby predictions [7], [55]. In this
paper, we apply simple modified bilateral filter [7], [56] that
processes weighted averaging of the probabilities of the data
points in close distance and similar intensity on the input X .
The filtering is defined as follows:

�pc(c|x) = 1

N

�

xi ∈�

gr(|X xi − X x |)gs(�xi − x�)pc(c|xi )

(15)

where � is the set of pixels within the filter’s radius and the
input difference; N is the normalization term.

N =
�

xi∈�

gr (|X xi − X x |)gs(�xi − x�). (16)

gr (·) and gs(·) are the Gaussian functions for an input differ-
ence r and a spatial distance s, respectively.

gr (r) = exp



− r2

2σ 2
r

�
, gs(s) = exp



− s2

2σ 2
s

�
. (17)

By experimenting on the validation dataset, the maximum
color and depth difference to consider are 100 and 400mm,
respectively. Both the standard deviations (σr and σs ) are 100.

Decision Boundary: Given the filtered probability �pc(c|x),
a decision boundary needs to be determined for classification.
Although the most common method is choosing the class c
with the highest probability �pc(c|x), it is not guaranteed to be
the best solution. Thus, for hand segmentation, the possible
boundaries are tested with the step size of 0.01 using the
validation dataset. Fig. 6 shows the F1 score, precision, and
recall on the validation dataset depending on the decision
boundary. The scores are computed using the proposed method

with 30 trees and without the bilateral filtering. The best
F1 score is achieved at the decision boundary of 0.59. For
semantic segmentation, the class with the highest probability
is selected considering the high complexity caused by the high
dimensional decision boundary.

IV. EXPERIMENTS AND RESULTS

The proposed method is applied to three applications:
road scene semantic segmentation, hand segmentation for
hand-object interaction, and indoor scene semantic segmenta-
tion. The experimental results demonstrate that the proposed
method outperforms typical random forest by learning uncon-
strained representations using particle swarm optimization
and processes efficiently comparing to neural network-based
methods.

For comparison, we report mean intersection over
union (IU) per category and per class for road scene semantic
segmentation dataset and precision, recall, and F1 score for
hand segmentation for hand-object interaction. Let ni j be the
number of pixels that belong to the class i and are predicted to
the class j , and nc be the total number of classes or categories.

IU = 1

nc

�

i



nii�

j
ni j + �

j
n j i − nii

�
,

Precision = n11

n11 + n01
,

Recall = n11

n11 + n10
,

F1 = 2n11

2n11 + n01 + n10
, (18)

where for hand segmentation, classes 1 and 0 denote “hand”
and “others”, respectively.

For quantitative comparison of efficiency, we measure
processing time using a machine with Intel i7-4790K CPU,
16.0GB RAM, and NVIDIA GeForce GTX 770 for hand
segmentation and the same machine with NVIDIA Tesla K40c
for semantic segmentation.

A. Hand-Object Interaction (HOI)

1) Dataset: We experiment using the publicly available
HOI dataset [14] which consists of 27,525 pairs of depth
maps and ground truth labels. The dataset was collected from
6 people (3 males and 3 females) interacting with 21 different
objects using Microsoft Kinect v2 camera. The dataset also
includes the cases of one hand and both hands in a scene.
We follow standard dataset split (19,470 pairs for training,
2,706 pairs for validation, and 5,349 pairs for testing).

2) Experiments: We trained 30 trees using the proposed
method. Each tree is trained with 2,000 pairs of depth maps
and ground truth labels and 500 data points from each image.
After training every 10 trees, we applied boosting by comput-
ing errors and by updating sampling probability based on the
errors. The condition for becoming a leaf node was 0.99 for
class probability, 0.0001 for remaining data portion, and 25 for
maximum depth.
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TABLE I

THE QUANTITATIVE RESULTS OF THE HOI DATASET

Fig. 7. The qualitative comparison of the result for the HOI dataset. (a) Results of the random forest [2], [6]. (b) Results of the random forest [2], [6] with
the decision boundary adjustment in III-C2. (c) Results of the FCN-8s model [9]. (d) Results of the proposed method. (e) Ground truth labels. The results
and the ground truth labels are visualized on the depth maps with different color channels for better visualization.

3) Results: The quantitative results and the qualitative
results are shown in Table I and Fig. 7, respectively. The
proposed method achieves about 31% and 12% relative
improvement in F1 score comparing to the typical RF-based
method [2], [6] and its combination with the decision bound-
ary adjustment in Section III-C2. Comparing to the deep
learning-based methods [9], [10], it achieves quite competitive
results (3% lower than the best method) in F1 score. Also,
the processing time of the proposed method is about 9 times
faster than those of the deep learning-based methods [9], [10].
Fig. 8 shows the analysis of the methods in accuracy and
efficiency. In Table II, we show empirical results of changing
the maximum depth in the proposed random forest. In this
analysis, the filter-size of bilateral filtering is 5×5.

B. Semantic Segmentation (Cityscapes)

1) Dataset: The Cityscapes dataset contains the images of
urban street scenes [15]. The dataset consists of 5,000 finely
annotated images and 19,998 sparsely annotated images.
We train models for the standard 19 classes problem using
the standard data separation of 2,975 finely annotated images
and 19,998 sparsely annotated images for training, 500 images
for validation, and 1,525 images for testing.

2) Experiments: We trained five trees using the proposed
framework. Each tree is trained with [12,974, 12,973, 7,658,
7,656, 7,658] pairs of images and ground truth labels. The first
two trees are trained using the entire finely annotated images
and the half of sparsely annotated images. The last three trees
are trained with 1/3 of entire training data sets. The selection
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Fig. 8. Analysis in accuracy and efficiency.

TABLE II

ANALYSIS OF THE MAXIMUM DEPTH IN THE PROPOSED
RANDOM FOREST USING THE HOI DATASET

of the number of images is based on both experimental and
intuitive choice. After training each tree, we applied boosting
by sampling the set of data points for the next tree based
on the current predictions. The condition for becoming a leaf
node is 0.99 for class probability, [0.000001 or 0.000002] for
remaining data portion, and 25 for maximum depth.

Although predicting using random forest is a computa-
tionally and memory efficient process, training large forest
with a huge amount of data is computationally expensive.
It is especially time-consuming during training procedure since
each node needs to be optimized conditioned on ancestor
nodes where the number of nodes can be up to 67,108,863 con-
sidering the maximum depth of 25. Hence, we improve the
training algorithm to reduce learning time.

One of the most time-consuming processes is loading
training images repeatedly. We used over 7,656 images to
train each tree where the original resolution of each image
is 2048×1024. The required memory to hold 7,656 color
images is 7,656×2,048×1,024×3 bytes (44.9 GB) which
are not accessible in modern single GPU. One option is
loading partial sets of images multiple times at each node.
However, it is a considerably time-consuming process since
loading 1,000 images from a hard disk drive takes 51 seconds
and repeating at 1,000 nodes demands 14 hours. Hence,
we propose to decrease the resolution of images to hold the
entire set of training data in memory after loading once for
a tree. Specifically, we resized images to 512×256 so that
the required memory to hold 12,974 color images is 4.8 GB.
Given 11 GB in modern single GPU, the rest of memory is
utilized to process learning algorithms.

Using the remaining memory, we were able to load
and process 103,792/382,900 samples for 12,974/7,658 color

images where each sample consists of frame index, x, Dx ,
and label. However, this number of samples is too small since
the average number of data points at depth 15 becomes 3.2
(103,792 / 215) and 11.7 (382,900 / 215). Hence, we employ
multiple sets of data points (specifically, 64 sets) so that the
average number at depth 15 becomes 202.7 and 747.9 data
points. We start training with 64 sets at a root node and merge
the sets at a deeper node since the number of data points in a
set decreases as the data splits to child nodes. While multiple
sets are employed to provide enough data, we use a single set
(possibly, merged from multiple sets) among them to train a
splitting node in order to reduce computation and data transfer
time.

3) Results: We compare the proposed method to deep
learning-based methods [9], [11], [45], [47], [48], [57]–[61]
in Table III and Fig. 9. We also show the results of the
proposed method with various conditions on the validation
set in Table IV. We report mean IU per category and per
class, processing time, and memory usage. Since optimizing
post-processing is beyond the scope of this paper, we report
processing time and memory usage excluding the demand
for bilateral filtering. The overall results show that the pro-
posed method processes each image using small computation
and memory resources while achieving meaningful precision.
It demonstrates that the proposed method can be applied for
real-time semantic segmentation. It can also be employed in a
low-end GPU or embedded system that demand small power
and memory consumption.

We show the results of applying the same random forest
model to the inputs of varying resolutions using the validation
set in Table IV. The results demonstrate that the proposed
method is robust to scaled input images by simply adjusting
the sparsities in the learned representations. It is feasible
since the sparsity in the proposed representation is defined
in floating-point precision. Table VI shows the results of
applying the FCN model trained with the input resolution
of 2048×1024 to the inputs of different resolutions using the
validation set. The accuracy degrades significantly since deep
learning-based methods utilize integer-point precision (mostly,
1) for sparsity.

4) Analysis: We demonstrate the effectiveness of the pro-
posed unconstrained representation and the particle swarm
optimization comparing to typical convolution filter and ran-
dom search [2], [6], [7] in Table V. By comparing the uncon-
strained representation and the convolution filter, the decision
tree trained using the unconstrained representation achieves
higher accuracy than the tree with the typical convolution filter
even with a smaller number of nodes, shorter processing time,
and lower GPU memory usage in both optimization methods.
For the typical convolution filter, 3×3×3 convolution filters
are used to take inputs from 3×3 spatial regions and entire
color channels (total 27 parameters). The analysis between
particle swarm optimization and random search shows that the
model trained with particle swarm optimization outperforms
the other model optimized with random search while com-
plexity (the number of nodes, processing time, and memory
usage) is similar. It verifies that more optimal representation
can be learned by using the unconstrained representation and
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Fig. 9. The qualitative comparison of the result for the Cityscapes dataset [15]. (a) Input image. (b) Results of the FCN-8s model [9], [45]. (c) Results of
the proposed method using five trees, bilateral filter of 13×13, and the input resolution of 256×128. (d) Results of the proposed method using five trees,
bilateral filter of 23×23, and the input resolution of 512×256. (e) Ground truth labels.

TABLE III

THE QUANTITATIVE RESULTS OF THE CITYSCAPES DATASET

the particle swarm optimization. In these analyses, the resolu-
tions of input images were 512×256 in training as explained
in Section IV-B2

In Table VII, we show empirical results to decide hyper-
parameters for particle initialization in particle swarm opti-
mization using the validation set. The hyperparameters are
to set the ranges for the uniform distributions described
in Section III-C1. Although evolved particles can move out-
side of the initial boundary, initializing particles in a desir-
able range is important to search solution space efficiently
using the limited number of particles and computational
resources.

In Table VIII, we show experimental analysis of adjusting
the maximum depth in the proposed method. In this analysis,
the input resolution and the filter-size of bilateral filtering are
512×256 and 19×19, respectively. The effects of varying the
maximum depth in different datasets can be observed using
Tables II and VIII.

We present per-category accuracy in Table IX. This analysis
shows that the result of the proposed method is competitive

for the categories of flat, sky, and nature comparing to
CNN-based methods. However, the accuracy difference is
greater for the categories of object and human that include
relatively small and sparse things such as traffic light, traffic
sign, and rider (also see Fig. 10). We believe it is greater for the
categories because of image resolution and random sampling.
First, we train and test using images with 512×256 resolution
because of the memory limit during training. This scaling
makes small objects even tinier. Consequently, it is challenging
to classify them in pixel-level during testing. Moreover,
because of randomly sampling from resized images without
data augmentation, the variety of data points for small object
classes is limited. Accordingly, the trained forest has limited
generality for new data.

While the proposed method has advantages in computational
complexity, memory demand, and ability to control complexity
by adjusting the number of trees and the input resolution,
the accuracy of the proposed method is limited comparing
to deep learning-based methods. We discuss three possible
explanations. First of all, while deep neural networks can
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TABLE IV

ANALYSIS OF THE PROPOSED METHOD USING THE VALIDATION SET OF THE CITYSCAPES DATASET

TABLE V

ANALYSIS ON LEARNING FEATURES USING THE PROPOSED UNCONSTRAINED REPRESENTATION AND THE PARTICLE SWARM OPTIMIZATION

TABLE VI

ANALYSIS ON APPLYING NEURAL NETWORKS TO INPUT

IMAGES WITH DIFFERENT RESOLUTION

describe nonlinear representations by using a hierarchical
structure with nonlinear activation functions, the representation
of the proposed method is a linear representation of the
original input image at the root node (see (2)). Second, while

TABLE VII

ANALYSIS ON HYPERPARAMETERS IN PARTICLE SWARM OPTIMIZATION

deep neural networks are usually trained end-to-end by using
back-propagation, the proposed method is trained in-order
from a parent node to child nodes. As all the nodes are trained
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Fig. 10. The qualitative comparison using enlarged results. Right-top parts of the images in Fig. 9 are visualized. (a) Input image. (b) Results of the FCN-8s
model [9], [45]. (c) Results of the proposed method using five trees, bilateral filter of 23×23, and the input resolution of 512×256. (d) Ground truth labels.

TABLE VIII

ANALYSIS OF THE MAXIMUM DEPTH IN THE PROPOSED
RANDOM FOREST USING THE CITYSCAPES DATASET

TABLE IX

ANALYSIS OF ACCURACY PER CATEGORY

only once in-order, overall optimization might be relatively
distant from global optima. Lastly, as Tables II and VIII
show, increasing the size of a tree can improve accuracy at
the cost of processing time and memory usage. However,
training a deeper tree is quite computationally expensive since
the number of nodes increases exponentially as the depth
increases.

C. Semantic Segmentation (NYUDv2)

1) Dataset: The NYUDv2 dataset consists of 1,449 pairs
of RGB-D images including various indoor scenes with
pixel-wise annotations [20]. The pixel-wise annotations
were coalesced into 40 dominant object categories by
Gupta et al. [62]. We experimented with this 40 classes prob-
lem using the standard data separation [20], [62] of 795 train-
ing images and 654 testing images.

TABLE X

THE QUANTITATIVE RESULTS OF THE NYUDV2 DATASET

2) Experiments: We trained a decision tree using the pro-
posed framework. To increase the variety of training data,
the training images are augmented to total 5,565 images by
randomly scaling, cropping, and altering color information.
For scaling, a random number is sampled from a uniform
distribution in [0.7, 1.3). If the scale is greater than one,
the enlarged image is randomly cropped to an image with
the original size. Concerning color alteration, images in RGB
space are first transformed to images in HSV space. Then,
values in H, S, and V space are scaled with a random
number drawn from uniform distributions in [0.9, 1.1), [0.666,
1.5), and [0.666, 1.5), respectively. For training, we sampled
1,024 sets of 100,170 samples. The condition for becoming
a leaf node is 0.9 for class probability, 0.000001 for the
remaining data portion, and 25 for maximum depth.

3) Results: The quantitative results of an ablation study are
shown in Table X. Although the pixel accuracy of the proposed
method is lower than deep neural network-based methods,
the processing time of the proposed method is about 30 times
faster than the other methods [9], [10], [13], [45].

V. CONCLUSION

We present the random forest framework that employs
the novel unconstrained representation to achieve real-time
semantic segmentation. The unconstrained representation is
proposed to learn optimal features to achieve higher accuracy.
The random forest framework is selected to obtain high
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efficiency for real-time processing. The results verify that
the proposed method achieves higher accuracy comparing to
previous random forest frameworks and processes using much
smaller computational and memory resources comparing to
deep learning-based methods.
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