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Abstract — Blood pressure (BP) is the most important indicator 
of cardiovascular diseases. Traditional cuff-based methods for 
measuring BP require manual intervention and time. These 
methods may lead to inaccurate measurements and are not 
practical for continuous BP monitoring, which is crucial for 
detecting abnormal BP fluctuations. In this study, we propose a 
personalized machine learning model to estimate BP using 
his/her previous BPs and the photoplethysmogram (PPG) 
signal, the simplest and most popular tool for non-invasive 
diagnosis. To best utilize the information contained in the PPG 
signal, we propose to apply wavelet decomposition to extract 
features from the PPG signal. The arterial blood pressure (ABP) 
time series is processed with an exponentially weighted moving 
average (EWMA) and a peak detection technique to derive the 
SBP, DBP, and their corresponding trends. Finally, a random 
forest model is used to construct a predictive model based on 
these features. The MIMIC dataset is used for analysis and 
comparison with other BP estimation methods. Our 
experimental results demonstrate the proposed approach has 
smaller estimation error than existing methods, with mean 
average errors (MAE) for SBP and DBP equal to 3.43 and 1.73, 
respectively. 

      Index Terms— Machine Learning; Blood Pressure; 
photoplethysmogram; Wearables; Wavelets

I. INTRODUCTION

High blood pressure (BP), or hypertension, affects 30% of 
American adults and contributes to over 410,000 deaths per 
year [1,2]. This condition has been called “the silent killer,” 
as typically no symptoms are recognized before significant 
damage has already been done to the heart and arteries [3]. 
BP is defined as the pressure exerted on the arteries as blood 
is pumped throughout the body and is measured in 
millimeters of mercury (mmHg). The primary metrics used to 
measure BP are systolic (SBP) and diastolic blood pressure 
(DBP), which are defined as the maximum and minimum 
blood pressure, respectively, during a pulse. 

For accurate diagnosis and treatment of hypertension, 
regular BP measurement is necessary. According to the 
American College of Cardiology, increased at home BP 
monitoring is essential for recognizing inconsistencies in 
measurements taken in a medical setting [4]. Currently, the 
predominant device for measuring BP is a mercury 
sphygmomanometer which involves attaching an inflatable 
cuff around the upper arm [5]. This process requires 
significant user effort, which limits the frequency of BP 
measurements and increases the chance of measurement 
error. The use of an arterial catheter can provide continuous 
BP measurement; however, it is highly invasive and 

impractical for daily life. On the other hand, continuous blood 
pressure estimation could be incorporated into one’s daily 
routine using data collected non-invasively. One prominent 
method is utilizing the photoplethysmogram (PPG) sensor, 
which is available in most wrist wearables. The principle of 
the PPG sensor is to measure the dilation and constriction of 
blood vessels. In this study, we propose the use of machine 
learning techniques to construct accurate and personalized 
models for BP estimation based on the PPG signal and 
historical BP values. 

A. Related Work 
Previous work focused on continuous BP estimation is 

described in [6-10]. The use of both electrocardiogram (ECG) 
and PPG signals for BP estimation is studied using neural 
networks [6] and regression trees [7]. Although the ECG 
signal provides useful insight into the operation of the 
circulatory system, the sensor is expensive and currently not 
available in most wearables. [8] uses both PPG and 
physiological features (e.g., height, weight, and age) for BP 
estimation. The inclusion of physiological features improves 
their model performance; however, their non-personalized 
approach does not meet the required performance of cuff-
based methods. This higher performance when including 
individual physiological features emphasizes the fact that 
personal characteristics play an important role in BP 
estimation. [9,10] propose methods for BP estimation using 
only the PPG signal. However, the performance is limited 
since their tree-based models are not personalized. 

All of the above studies cannot inherently extract time 
series information, and more descriptive time series features 
are required. In addition, none of the above papers consider 
historical BP information as an additional predictor variable. 
Since our goal is to produce a practical, cost-effective 
solution for continuous BP measurement, we only consider 
the PPG signal as an input to our system. [9,10] extract 
statistical features from the PPG series on a per cycle basis, 
which does not fully capture the time series dependence 
between cycles. In order to best extract features from the PPG 
time series, our approach utilizes wavelet decomposition 
[11], which is known for its ability to extract the true 
underlying variation of a signal. As indicated in [8], 
individual physiology ranges from person to person. Taking 
this into consideration, we train personalized models for each 
patient in our study. Wavelet decomposition creates a large 
number of features, some of which may be an irrelevant and 
redundant representation of the PPG signal. To address this 



issue, we select the random forest, one of the most popular 
ensemble learning methods, as our machine learning model 
due to its ability to perform well with redundant features. 
Furthermore, if historical BP information using an 
exponentially weighted moving average (EWMA) is 
provided as an additional feature, the performance exceeds all 
previous work for BP estimation based on 
photoplethysmography.  

The rest of the paper is organized as follows. In section II, 
data retrieval, feature extraction, and the proposed random 
forest approach to personalized BP estimation are presented. 
In section III, the performance of our model is evaluated. 
Finally, we conclude the paper in section IV.

II. PROPOSED METHOD

A. Dataset and BP Estimation Framework
Data was obtained from the Multiparameter Intelligent 

Monitoring in Intensive Care (MIMIC) database [12]. This 
database contains records of over 90 intensive care unit 
patients, with an average of 40 hours of data per patient. The 
waveforms collected include ECG, respiration, continuous 
blood pressure, and PPG signals each sampled at 125 Hz. The 
arterial blood pressure (ABP) was directly measured from a 
radial artery using an invasive catheter. A fingertip sensor 
was used to measure the PPG data. Not all patients have data 
for all signals, and only patients with sufficient PPG and 
blood pressure data were considered for this study. As a 
result, we filtered out 40 patients with sufficient PPG and 
ABP data.

The block diagram of our proposed framework is shown 
in Figure 1. The first stage of the preprocessing phase is time 
series decomposition using wavelet transformation (WT) 
[11], a signal processing technique used to analyze the PPG 
signal in both the temporal and spectral domain. In our study, 
we use the stationary wavelet transform (SWT) to derive 
additional features with length equal to that of the original 
PPG signal. Both the mathematical formulation and 
application of the wavelet transform is described in the 
following section.

The next step is to extract the SBP and DBP (maximum 
and minimum ABP) from the raw ABP signal in each pulse. 
We adopt a peak detection technique [13], which uses a 
moving average of the ABP as the threshold to determine the 
indices of the peaks in the ABP series. Once these indices are 
known, the original dataset for each patient is downsampled 
to only include the BP and feature values for each peak index. 
This results in a dataset with SBP values and corresponding 
PPG and wavelet values. DBP indices are determined by 
inverting the ABP series to detect the local minimum in each 
pulse. A separate dataset is constructed for the DBP values 
with corresponding PPG and wavelet values. Both the SBP 
and DBP values along with the raw ABP waveform can be 
seen in Figure 2.

Once the SBP and DBP datasets have been constructed, 
an additional EWMA feature is included for both SBP and 
DBP. The rationale is that the EWMA provides a low-
variance representation of the SBP and DBP waveforms. In 
our study, the EWMA series is offset by 10 minutes. Finally, 
we use a random forest to estimate current SBP and DBP with 
our derived dataset containing the EWMA and wavelet-
decomposed PPG data. Our proposed model uses a 
combination of SBP and DBP features for every cycle to 
estimate SBP/DBP values. Since SBP and DBP are strongly 
correlated, merging the SBP and DBP datasets into a single 
dataset provides a stronger representation of PPG and 
historical BP. 

Figure 2. SBP and DBP values vs. raw ABP series

Figure 1. Block Diagram of proposed framework



B. Wavelet Decomposition
Wavelet transform is used in order to understand the 

underlying variation of the PPG signal at multiple levels of 
resolution. Although the Fourier transform is widely used to 
extract global frequencies present in a signal, it is not able to 
provide any resolution in time. That is, it cannot determine at 
which times specific frequency components are present. 
Wavelet analysis trades off resolution in frequency for 
resolution in time by instead projecting the signal onto 
wavelet functions, as compared to sinusoids in the Fourier 
case. The mother wavelet function is defined as a short 
duration wave, and other wavelets are obtained by shifting 
and changing the frequency of the mother wavelet. The 
following equation describes a wavelet function 
parameterized by translation and dilation parameters  and , 𝑏 𝑎
where  is the mother wavelet function.Ψ(𝑡)

Ψ𝑎,𝑏(𝑡) =
1
𝑎

Ψ(𝑡 ― 𝑏
𝑎 )

The PPG signal is decomposed using these wavelets at 
different dilations and translations in order to get a high-
resolution frequency representation of the signal. The above 
equation represents the continuous wavelet transform.  Figure 
3 displays a filter representation of the SWT, which consists 
of a cascade of low and high pass filters [11]. Ai and Di 
correspond to the approximate and detailed coefficients at 
level i. This cascade of filters allows for a multi-tiered 
frequency representation of the PPG signal to be extracted. 
Figure 4 displays a segment of a PPG signal and the 
corresponding detailed wavelet components at multiple 
levels.

C. Random Forest
After the preprocessing phase, the SBP and DBP datasets 

are used to train our machine learning model. Due to the 
redundant representation of the PPG signal acquired from the 
stationary wavelet transform, the top performing machine 
learning algorithm must be robust to potentially irrelevant 
features. The random forest (RF) model is known to perform 
well even when using redundant features [14]. In addition, the 
random forest model only has two primary parameters, 
making the parameter tuning process far more tractable than 
a deep learning approach. A model that is not hyper-sensitive 

to its parameters allows it to be more easily applied to new 
patient data.

The random forest is an ensemble model, which trains 
multiple decision trees and averages the outputs of each of 
these trees when making a prediction. Each individual tree 
learns decision rules from the input PPG data that lead to the 
greatest reduction in the variance of the target blood pressure 
values. Every tree consists of 3 types of nodes: 1) root node, 
where all data is input before any splits, 2) decision nodes, 
where the data is split according to the feature values, and 3) 
leaf nodes, where no more splits are performed. Since SBP 
and DBP are continuous values, these trees are called 
regression trees. When provided with a new data sample, each 
decision tree will output the average value of the leaf node in 
which that sample falls. 

Random forests take advantage of the principle that a 
group of weak learners (decision trees) can form a strong 
learner. Bootstrap aggregation is the method used for training 
random forests. Data samples are randomly drawn from the 
entire dataset with replacement to form a bootstrap dataset 
that is the same size as the original dataset. Each decision tree 
is trained using a different bootstrap dataset. This process 
reduces the variance of the overall model, as the output is 
averaged over all individual trees. In addition, the bias 
remains unchanged as each tree is identically distributed and 

Figure 3. Filter implementation of SWT

Figure 4. Detailed wavelet coefficients of PPG segment



therefore the expectation of the average of the trees is equal 
to the expectation of any individual tree. As a result, RF 
decreases the overall error by reducing the variance while 
maintaining the same bias. 

III. RESULTS AND DISCUSSION

In this section, we will describe the experiment settings 
and compare BP estimation results obtained from our 
proposed method to previous work. We also discuss feature 
importance and test our model on future BP prediction. 

A. Experiment Setting
We implement and evaluate our machine learning model 

using the Scikit-learn library [15] and Keras [16] in the 
python environment on an Intel i5 3.2GHz quad-core and 
16GB RAM computer. Root mean square error (RMSE), 
mean absolute error (MAE), and mean absolute percentage 
error (MAPE) are calculated and used as our evaluation 
metrics. Their definitions are as follows:

𝑅𝑀𝑆𝐸 =  
∑𝑛

𝑖 = 1(𝑃𝑖
𝑝𝑟𝑒𝑑 ― 𝑃𝑖

𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑛

𝑀𝐴𝐸 =  
∑𝑛

𝑖 = 1|𝑃𝑖
𝑝𝑟𝑒𝑑 ― 𝑃𝑖

𝑎𝑐𝑡𝑢𝑎𝑙|
𝑛

𝑀𝐴𝑃𝐸 =  
𝑛𝑀𝐴𝐸

∑𝑛
𝑖 = 1|𝑃𝑖

𝑎𝑐𝑡𝑢𝑎𝑙|
 × 100%

We use 5-fold cross-validation to randomly split the SBP 
and DBP datasets for each individual into the train (80%) and 
the test (20%) sets 5 times and average the estimation results. 
Personalized models are built for all 40 patients, each using 
10 hours of data. For our RF models, we set the number of 
trees to 200 and the minimum number of samples required to 
split an internal node as 2. For comparison, a long short-term 
memory (LSTM) network is also trained to estimate BP based 
solely on historical BP. This is carried out in order to 
determine how our proposed method compares to a deep 
learning approach that is known to effectively model time 
series. The LSTM is trained using 64 as the batch size and the 
Adam optimizer [17]. We also use early stopping and insert 
dropout layers with dropout rate equal to 0.2 to avoid 
overfitting. In addition, we compare our results to the 
RReliefF framework proposed by [9]. This framework selects 
a subset of the most relevant statistical features they extract 

from the PPG series to provide to their model. This direct 
comparison to [9] can be made because the MIMIC dataset 
was also used in their study. They do not provide results for 
RMSE or MAPE. We also compare the performance of the 
variants of our proposed method with different subsets of 
features. These different feature sets include 1) PPG + 
Wavelets, 2) PPG + Wavelets + EWMA, and 3) PPG + 
Wavelets + EWMA + BP-Merge, where the third feature set 
corresponds to our proposed method described in Section II. 

B. BP Estimation Results 
Table I summarizes the performance for BP estimation 

using the RF model with different feature sets compared to 
both the LSTM and RReliefF method [9]. These values are 
the average over 40 patients.  As can be seen, the performance 
of the RF model when using PPG and wavelet features is 
significantly better than the LSTM when using historical BP. 
The MAE for SBP and DBP estimation when using the RF 
and these features is 4.88 and 2.61, respectively, while that of 
the LSTM is 10.14 and 4.94. This is a surprising result, as the 
LSTM is expected to work well with time series data; 
however, it indicates that the PPG and wavelet features are a 
robust set of features on their own for BP estimation. 

Figure 5. True vs. Estimated SBP/DBP series

TABLE I. Comparison of performance for different methods



The performance of our RF model increases when the 
EWMA is added in addition to the PPG and wavelet features. 
The average MAE for SBP and DBP decreases from 4.88 to 
3.90 and from 2.61 to 2.04, respectively. Furthermore, our 
proposed method (PPG + Wavelets + EWMA + BP-Merge) 
results in the top performance. The MAE for SBP and DBP 
estimation when using this approach is 3.43 and 1.73, 
respectively. This satisfies the standard for cuff-based 
measurement, which is a MAE of 5 for both SBP and DBP 
[18]. In addition, our performance exceeds that of the 
RReliefF method, which obtained a MAE of 4.47 and 2.02 
for SBP and DBP. We attribute this increase in performance 
to our use of wavelet decomposition, the inclusion of 
historical BP as an additional feature, and a combination of 
SBP and DBP features. Figure 5 displays a segment of the 
true SBP/DBP series compared to our estimated series for one 
patient. 

The random forest model is also able to obtain a ranking 
of the feature importance. This provides insight into which 
features have the largest effect on BP estimation. The 
following are the 3 most common top feature for estimating 
SBP when using our combined SBP/DBP features approach: 
1.) SBP EWMA, 2.) DBP EWMA, 3.) SBP PPG. This 
indicates that historical BP information is a significant factor 
in estimating new BP values. Figure 6 displays the top 5 
features and their relative importance for 2 of the 40 patients. 
Each feature importance score is in between 0 and 1. 

As can be seen, the top features along with their 
importance score range from patient to patient. This indicates 
that certain features are more important for specific 
individuals, which further validates our approach to using 
personalized models. The top 5 features along with their 
importance score for patient 1, in order, are: 1) Wavelet D2 
(0.241), 2) Wavelet D1 (0.096), 3) EWMA SBP (0.087), 4) 
Wavelet D4 (0.081), and 5) Wavelet A8 (0.074). Clearly, the 
detailed wavelet coefficients have a strong effect on BP 
estimation for this patient. As described earlier, these 
coefficients correspond to the outputs of the high pass filters 
in the SWT implementation. Larger wavelet numbers 
correspond to deeper levels of the filter cascade. For patient 
2, the top 5 features and importance scores are: 1) EWMA 
SBP (0.734), 2) Wavelet D5 (0.071), 3) Wavelet D3 (0.034), 

4) Wavelet D2 (0.030), and 5) Wavelet D6 (0.022). The 
differences in feature importance for patient 1 are far less than 
those for patient 2, whose top feature clearly dominates with 
a score of 0.734. The remaining four features for patient 2 
also consist of detailed wavelet coefficients, indicating this 
representation of the PPG series contributes to our high 
performance.

We also test our model’s ability to predict future BP 
values when using the combined feature set. Five different 
look-ahead windows are considered and include 5 minutes, 
10 minutes, 30 minutes, 1 hour, and 2 hours. As can be seen 
from Table II, the performance decreases when predicting 
further into the future but levels off after a certain point. The 
MAE for predicting SBP 5 minutes into the future is 5.01 as 
compared to 3.43 for estimating current values. For DBP, 
these MAEs are 2.37 and 1.73, respectively. This significant 
increase in error indicates that current PPG information does 
not provide a strong representation of future BP values, and 
loses its predictive power relatively quickly. As the look-
ahead window increases, the MAE for both SBP and DBP 
prediction saturates. The difference in performance for SBP 
prediction 30 minutes and 2 hours into the future is 0.03. For 
DBP, this difference is 0.002. This demonstrates that after a 
certain look-ahead window, our model reaches a performance 
limit. Overall, these results indicate that predicting future BP 
values is more difficult than estimating current values, and 
additional derived features, possibly from health and sleep 
data, are required.

IV. CONCLUSION

In this paper, we provide a novel machine learning 
approach to continuous BP estimation. Our preprocessing 
framework successfully extracts information from the raw 
PPG and ABP signals. Our use of wavelet decomposition to 
extract features from the PPG series, in conjunction with 
using historical BP information in the form of an 
exponentially weighted moving average, provides a robust set 
of features for BP estimation. By including the extra 
historical BP feature, the performance greatly improves, 
indicating that past BP information should be considered 
when estimating new BP values. Furthermore, when combing 
the SBP and DBP feature sets, our top performing model 
exceeds the cuff-based standard and all other studies 
conducted on this topic. Provided PPG and BP data from a 
new patient, our proposed method can be used to construct a 
personalized BP estimation model that can carry out 

Figure 6. Comparison of top 5 features for two patients

TABLE II. Performance for different look-ahead windows



continuous BP measurement. Future work involves 
developing a method for transferring existing models to new 
patients that do not have enough personal data to form their 
own models. 
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